If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-17)(4x-18)=(8x-12)(2x-5)
We move all terms to the left:
(2x-17)(4x-18)-((8x-12)(2x-5))=0
We multiply parentheses ..
(+8x^2-36x-68x+306)-((8x-12)(2x-5))=0
We calculate terms in parentheses: -((8x-12)(2x-5)), so:We get rid of parentheses
(8x-12)(2x-5)
We multiply parentheses ..
(+16x^2-40x-24x+60)
We get rid of parentheses
16x^2-40x-24x+60
We add all the numbers together, and all the variables
16x^2-64x+60
Back to the equation:
-(16x^2-64x+60)
8x^2-16x^2-36x-68x+64x+306-60=0
We add all the numbers together, and all the variables
-8x^2-40x+246=0
a = -8; b = -40; c = +246;
Δ = b2-4ac
Δ = -402-4·(-8)·246
Δ = 9472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9472}=\sqrt{256*37}=\sqrt{256}*\sqrt{37}=16\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-16\sqrt{37}}{2*-8}=\frac{40-16\sqrt{37}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+16\sqrt{37}}{2*-8}=\frac{40+16\sqrt{37}}{-16} $
| 2x-3=90,3x-2=90 | | m-87=42 | | 97-7x=41 | | a÷17=4 | | 48=m+17 | | -5x+1=-2x-2 | | x+2*7=252 | | 3/v=39 | | 32.8/m=8 | | 35×2x=17 | | 2/5x+4=2/3(x-4) | | 52 x+4=32 (x−4) | | 4x+94=180 | | 4x-3=2(2x+1 | | 4y=8y-12 | | 8(x+1)=2(2x-2) | | x-6=2x-18 | | 9^1-3x=1/27^2x | | 3x2=8=83 | | 3x+12=9x-4 | | 4.7y=-42.3 | | 3w+5=7w-15 | | d2+6d−35=0 | | 1/2+m=5/6 | | 3x-8+5x+10=80 | | 3x-12=9x-4 | | 6v+40=14v | | -1+36x=53x+3 | | 5x=140-2x | | m=17/3+16/3 | | 41(1/23)+1=x | | Y=-8/3x-6 |