(2x-17)*(x-5)-(3x+1)*(x-7)=84

Simple and best practice solution for (2x-17)*(x-5)-(3x+1)*(x-7)=84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-17)*(x-5)-(3x+1)*(x-7)=84 equation:



(2x-17)(x-5)-(3x+1)(x-7)=84
We move all terms to the left:
(2x-17)(x-5)-(3x+1)(x-7)-(84)=0
We multiply parentheses ..
(+2x^2-10x-17x+85)-(3x+1)(x-7)-84=0
We get rid of parentheses
2x^2-10x-17x-(3x+1)(x-7)+85-84=0
We multiply parentheses ..
2x^2-(+3x^2-21x+x-7)-10x-17x+85-84=0
We add all the numbers together, and all the variables
2x^2-(+3x^2-21x+x-7)-27x+1=0
We get rid of parentheses
2x^2-3x^2+21x-x-27x+7+1=0
We add all the numbers together, and all the variables
-1x^2-7x+8=0
a = -1; b = -7; c = +8;
Δ = b2-4ac
Δ = -72-4·(-1)·8
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-9}{2*-1}=\frac{-2}{-2} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+9}{2*-1}=\frac{16}{-2} =-8 $

See similar equations:

| 8h+4=6+9h | | 3/4x+5=5/4x+25 | | 6t-3t+9=-9+6t | | 1/4t+4=3)4(t+8 | | 6d=-9+7d | | 8x+74+2x=56 | | 3x/7=27/7 | | 3k-8=-3k-2 | | -3/5+y=-1/2 | | 7+b/6=-1 | | (1-2n)4-(-7n)=-4 | | 7a+6=-5(a-6 | | -9s+6=-10s | | -2(6s+11)=-10s+14 | | 60(t+.5)=40t | | 35=8x=59 | | -7s+1=4s−8−10s | | 2-1-1=-1b | | 13=x/3+9 | | 4v+7=5v | | 9n=-7+10n | | -3x-11+12=-8 | | 9n=-7+10 | | -2+w/3=-14 | | 4y−8=5y | | 2x+4=x=20 | | A=(30+2x)(40+2x) | | -x.9=-8 | | -34-(-48)=x/4 | | 4c−8=5c | | 23x+10-15x=4(2x-3)+2 | | 4w+4=32 |

Equations solver categories