(2x-2)(3-2x)=(x-3)(3-3x)

Simple and best practice solution for (2x-2)(3-2x)=(x-3)(3-3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-2)(3-2x)=(x-3)(3-3x) equation:



(2x-2)(3-2x)=(x-3)(3-3x)
We move all terms to the left:
(2x-2)(3-2x)-((x-3)(3-3x))=0
We add all the numbers together, and all the variables
(2x-2)(-2x+3)-((x-3)(-3x+3))=0
We multiply parentheses ..
(-4x^2+6x+4x-6)-((x-3)(-3x+3))=0
We calculate terms in parentheses: -((x-3)(-3x+3)), so:
(x-3)(-3x+3)
We multiply parentheses ..
(-3x^2+3x+9x-9)
We get rid of parentheses
-3x^2+3x+9x-9
We add all the numbers together, and all the variables
-3x^2+12x-9
Back to the equation:
-(-3x^2+12x-9)
We get rid of parentheses
-4x^2+3x^2+6x+4x-12x-6+9=0
We add all the numbers together, and all the variables
-1x^2-2x+3=0
a = -1; b = -2; c = +3;
Δ = b2-4ac
Δ = -22-4·(-1)·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4}{2*-1}=\frac{-2}{-2} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4}{2*-1}=\frac{6}{-2} =-3 $

See similar equations:

| 7x-4x=8-2x-8x | | 2a-7=3.5 | | 3d=2d—2 | | 2(x+2)2+6=18 | | 10h=5=105 | | 3d=2d–2 | | 2a/5=3/2 | | 16x2+15=14 | | x2−8x=−46 | | A={x/x+9=21} | | 22=6u-2 | | x/2-2x/3=6 | | -8(3x-4)=4(5x-1)+80 | | 4^y=400 | | 3^3y=27 | | 4x=5=33 | | 100x^2-225=(10x+15)(10x-15) | | 100x^2-225={}{} | | 5x+46=10x-9 | | (z÷7)+8=6 | | x-(x*0,2)=2400 | | 4+77x=44x+6 | | 2(4y-9)=4 | | z÷7+8=6 | | 3(x-1)=200 | | 6(x+4)=70 | | 5,8/x−62=−4 | | 7x-1=9x-9 | | 171=1-x | | 2.7/x/5.3=102.1/98.7/97.7 | | 7x+9=160 | | 5/6/7=8/x/4 |

Equations solver categories