If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x-2)+(x+1)+x+(x+1)=(2x-9)(x+1)+(x+8)+x
We move all terms to the left:
(2x-2)+(x+1)+x+(x+1)-((2x-9)(x+1)+(x+8)+x)=0
We add all the numbers together, and all the variables
x+(2x-2)+(x+1)+(x+1)-((2x-9)(x+1)+(x+8)+x)=0
We get rid of parentheses
x+2x+x+x-((2x-9)(x+1)+(x+8)+x)-2+1+1=0
We multiply parentheses ..
-((+2x^2+2x-9x-9)+(x+8)+x)+x+2x+x+x-2+1+1=0
We calculate terms in parentheses: -((+2x^2+2x-9x-9)+(x+8)+x), so:We add all the numbers together, and all the variables
(+2x^2+2x-9x-9)+(x+8)+x
We add all the numbers together, and all the variables
(+2x^2+2x-9x-9)+x+(x+8)
We get rid of parentheses
2x^2+2x-9x+x+x-9+8
We add all the numbers together, and all the variables
2x^2-5x-1
Back to the equation:
-(2x^2-5x-1)
5x-(2x^2-5x-1)=0
We get rid of parentheses
-2x^2+5x+5x+1=0
We add all the numbers together, and all the variables
-2x^2+10x+1=0
a = -2; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·(-2)·1
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{3}}{2*-2}=\frac{-10-6\sqrt{3}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{3}}{2*-2}=\frac{-10+6\sqrt{3}}{-4} $
| 9x(5-3)=(x5)-(x3 | | 0.08=0.2x-5 | | n=2+2/7 | | (2x-2)+(x+1)=(2x-9)+(x+8) | | 8/3x=−5/9 | | (n-2/7)=2 | | 5y–y=+2y | | 33=-3x-x+1 | | 1+(r/9)=4 | | (-0.9-x)^2=0 | | 4x/20=2x-26 | | 81+x=144 | | 3(x^2)+3x+1=0 | | 0.16*x=1 | | -17=4x-x+4 | | u3-2=5 | | -8(10x+10)=0 | | M/6+m/3=10 | | t4+53=60 | | 42g=7 | | 3(2x+6)-5x+1=8 | | 2(x–3)=8 | | -8p+6-10p=2p+6 | | 21p^2+15p+8=8 | | 63f=7 | | 3/4y=1.5 | | n-32=82 | | x(47)=2162 | | 7x-6+4x=82 | | 32=b5+24 | | 43+h=938 | | -3x+8-5=21-8x |