(2x-3)(x+1)=(2x-3)(4x-5)

Simple and best practice solution for (2x-3)(x+1)=(2x-3)(4x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(x+1)=(2x-3)(4x-5) equation:



(2x-3)(x+1)=(2x-3)(4x-5)
We move all terms to the left:
(2x-3)(x+1)-((2x-3)(4x-5))=0
We multiply parentheses ..
(+2x^2+2x-3x-3)-((2x-3)(4x-5))=0
We calculate terms in parentheses: -((2x-3)(4x-5)), so:
(2x-3)(4x-5)
We multiply parentheses ..
(+8x^2-10x-12x+15)
We get rid of parentheses
8x^2-10x-12x+15
We add all the numbers together, and all the variables
8x^2-22x+15
Back to the equation:
-(8x^2-22x+15)
We get rid of parentheses
2x^2-8x^2+2x-3x+22x-3-15=0
We add all the numbers together, and all the variables
-6x^2+21x-18=0
a = -6; b = 21; c = -18;
Δ = b2-4ac
Δ = 212-4·(-6)·(-18)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3}{2*-6}=\frac{-24}{-12} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3}{2*-6}=\frac{-18}{-12} =1+1/2 $

See similar equations:

| 47=4x=3x=5 | | 3(14+x)=57. | | 4x-5x+10=-6 | | 5/x+4=5/13 | | e-7.3=3.4 | | 3(2y)-6y=0 | | 6(x-2)-8x=2(x+6) | | A/4=c/3 | | 9y/2=27y= | | 9y÷2=27y= | | 6(x+2=30 | | x-(0.25x)-37821=60000 | | 23+b^2=87 | | 9y/2=277= | | 19=x−26 | | 8+12x=7x+33 | | -2/3x+9=4/x-3 | | 25+b^2=74 | | ∠A=x−10 | | 6x+4°=4x+6° | | m18=m6 | | (45÷x)+1=10 | | Y=1,8x+120 | | m-(34)=-98 | | -8+x=29 | | Y=1,5x+180 | | x=−4±14​ | | √3x²-2x+12=0 | | x+13=-9x | | 223=-u+37 | | 273-u=113 | | 8Y-56=2y-6 |

Equations solver categories