(2x-3)(x+1)=2x-3x+4

Simple and best practice solution for (2x-3)(x+1)=2x-3x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(x+1)=2x-3x+4 equation:



(2x-3)(x+1)=2x-3x+4
We move all terms to the left:
(2x-3)(x+1)-(2x-3x+4)=0
We add all the numbers together, and all the variables
(2x-3)(x+1)-(-1x+4)=0
We get rid of parentheses
(2x-3)(x+1)+1x-4=0
We multiply parentheses ..
(+2x^2+2x-3x-3)+1x-4=0
We add all the numbers together, and all the variables
(+2x^2+2x-3x-3)+x-4=0
We get rid of parentheses
2x^2+2x-3x+x-3-4=0
We add all the numbers together, and all the variables
2x^2-7=0
a = 2; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·2·(-7)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*2}=\frac{0-2\sqrt{14}}{4} =-\frac{2\sqrt{14}}{4} =-\frac{\sqrt{14}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*2}=\frac{0+2\sqrt{14}}{4} =\frac{2\sqrt{14}}{4} =\frac{\sqrt{14}}{2} $

See similar equations:

| 4r+17=10r+7 | | 2(l-3)=5(4l+2) | | 5z+8=8z | | 1/2x+2/3=2/3x | | 15(2+5x)=8(6x-3) | | z/5=8/15 | | 3x5–4=3 | | 2(5t+1)=6 | | 5(3a+2)=25 | | 30/7-9x=5 | | 5(t+30=5 | | 4(t-3)=4 | | y/5-7=-42 | | 5-3x=-6x(x+2) | | 8m/3+4=20 | | 5x+7÷2=2(3x-1)+7÷2 | | 7x^2+18x=10x^2+12x | | 0.25x120000= | | r/4-9=-45 | | 4s-9=-45 | | 25x+11=36 | | 8+10x=12x-8 | | 14=6b+8 | | 8x+10=8-12x | | 1/8x-1/2+1/6x=1/4x+1/2 | | 6-2b=-10 | | y=100+0.8y-80+1600-0.25y | | 7y-2(3/4)=1/2 | | 3m-7m=5/8 | | 2/3x-3/4+3/4x=3/2x-7/4 | | 5^(2x+1)=12x | | 4x²-2x=O |

Equations solver categories