(2x-3)(x+5)/x-7=0

Simple and best practice solution for (2x-3)(x+5)/x-7=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(x+5)/x-7=0 equation:



(2x-3)(x+5)/x-7=0
Domain of the equation: x!=0
x∈R
We multiply parentheses ..
(+2x^2+10x-3x-15)/x-7=0
We multiply all the terms by the denominator
(+2x^2+10x-3x-15)-7*x=0
We add all the numbers together, and all the variables
(+2x^2+10x-3x-15)-7x=0
We get rid of parentheses
2x^2+10x-3x-7x-15=0
We add all the numbers together, and all the variables
2x^2-15=0
a = 2; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·2·(-15)
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{30}}{2*2}=\frac{0-2\sqrt{30}}{4} =-\frac{2\sqrt{30}}{4} =-\frac{\sqrt{30}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{30}}{2*2}=\frac{0+2\sqrt{30}}{4} =\frac{2\sqrt{30}}{4} =\frac{\sqrt{30}}{2} $

See similar equations:

| 10(5-h)-1=29 | | 6n=-8n+28 | | -5(x+7)-2=3x-8(x+1) | | 4=-0/8n | | 15x-3+4x=-x+37 | | 124=4(-7x-4) | | 14e–11=25 | | 6x-(2x-1)=3x+7 | | 11x=-2/3(6x+3)+5(x+2) | | 4(7+3y)=27 | | -5(4-2r)=-90 | | 1/3z+-25=-17 | | 3x-5+2x+1+x+8=76 | | 12=2x+2/8 | | n-1/2-11/4=5 | | 7g-5=6g-8 | | 2x-0.5(x-8)=-4(x+2)+1 | | -18=-n+1 | | -2x-6+10=16 | | 5(3x-2)=1/2(4x+6) | | 10+6p=28 | | .75(x+20)=2+.5(×-2) | | .75(x+20)=2+.5(×-2 | | 2/3(x+1/2$=-1 | | F(-5)=x^2+3x-22 | | 13n=-4n= | | 2x+3=1-2x+6 | | X2-1x=30 | | 8x+x=x+43 | | 8n=16+4 | | 1/3x+4=x- | | 0.3(0.2x+1.2)+1.27=−0.77 |

Equations solver categories