(2x-3)(x+5)=(3x-5)(x-3)

Simple and best practice solution for (2x-3)(x+5)=(3x-5)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(x+5)=(3x-5)(x-3) equation:



(2x-3)(x+5)=(3x-5)(x-3)
We move all terms to the left:
(2x-3)(x+5)-((3x-5)(x-3))=0
We multiply parentheses ..
(+2x^2+10x-3x-15)-((3x-5)(x-3))=0
We calculate terms in parentheses: -((3x-5)(x-3)), so:
(3x-5)(x-3)
We multiply parentheses ..
(+3x^2-9x-5x+15)
We get rid of parentheses
3x^2-9x-5x+15
We add all the numbers together, and all the variables
3x^2-14x+15
Back to the equation:
-(3x^2-14x+15)
We get rid of parentheses
2x^2-3x^2+10x-3x+14x-15-15=0
We add all the numbers together, and all the variables
-1x^2+21x-30=0
a = -1; b = 21; c = -30;
Δ = b2-4ac
Δ = 212-4·(-1)·(-30)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-\sqrt{321}}{2*-1}=\frac{-21-\sqrt{321}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+\sqrt{321}}{2*-1}=\frac{-21+\sqrt{321}}{-2} $

See similar equations:

| -16-g=8 | | 96+15m=336 | | 15x^2-110x+120=0 | | -4(x-2(2x-3))+1=2x-3 | | 2/3g=-41/3 | | 31n-160=336 | | 5h-15+6=5h-10 | | 9x-14=4x=6 | | (2x-50)+18=180 | | 25=(x-17)5 | | 4(-3x+4=-2(6x-8) | | .5x-4.5=-1.7 | | 7a-6=+8a | | 7x-30+3x=10 | | t-(-15=21 | | 4(-3x+4=-2(6x-8 | | 3m+m+m=180 | | x+139=50 | | -16+5x=14-5x | | 3x-5x+15x=23 | | 246=6x-4(-6x+6) | | 8(x-9)-9=-81 | | 9(4-2x)=6(3x-24) | | 18+12x=50 | | X+2=15+2x | | 60+35h=65h | | 500-25x=350 | | -2.1(.3b+2.4)+1.7(2.1-1.36)=7.05 | | 5−2(x+5)=30 | | -16-x/4=-32 | | x=555555555555x888888888888888 | | 5(x-7)^2+135=0 |

Equations solver categories