(2x-3)(x-1)=x+1

Simple and best practice solution for (2x-3)(x-1)=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(x-1)=x+1 equation:



(2x-3)(x-1)=x+1
We move all terms to the left:
(2x-3)(x-1)-(x+1)=0
We get rid of parentheses
(2x-3)(x-1)-x-1=0
We multiply parentheses ..
(+2x^2-2x-3x+3)-x-1=0
We add all the numbers together, and all the variables
(+2x^2-2x-3x+3)-1x-1=0
We get rid of parentheses
2x^2-2x-3x-1x+3-1=0
We add all the numbers together, and all the variables
2x^2-6x+2=0
a = 2; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·2·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*2}=\frac{6-2\sqrt{5}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*2}=\frac{6+2\sqrt{5}}{4} $

See similar equations:

| 18a–12=13a–2. | | 9=-14+2-4x+x | | x^2-16x=-11 | | a+33=8a+26 | | 4.9k-13=2k | | a+33=8a+3 | | 2k-2k+3k+k-2k=8 | | 3x-6=85 | | u/30-3=1 | | 2(4a-7)-3(5-3a)=-8(2-6a)-12 | | -7a+5a+2=4-4a | | 3.56x100= | | 40=121-9q | | 2*0+y=2 | | Y.y-13=8 | | 18/3x+2=0 | | v+64=3v+12. | | z+40/8=20 | | 4x-12+1=0 | | 2x+4x=2x+6 | | 2v+68=v+70 | | 2(-6+x)=8x | | 2.3x+25+5.8x+11=180x | | v/25-5=5 | | 8(z-(-6))=7 | | 7=y/5-15 | | 4w+82=w+85 | | 297/t=11 | | 3(n+4)=1/2(-6n+12) | | N-7=-14+6n-4n | | 4w+82=w+45 | | 18=w/5+12 |

Equations solver categories