(2x-3)(x-6)+(2x-3)(x-4)=0

Simple and best practice solution for (2x-3)(x-6)+(2x-3)(x-4)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)(x-6)+(2x-3)(x-4)=0 equation:



(2x-3)(x-6)+(2x-3)(x-4)=0
We multiply parentheses ..
(+2x^2-12x-3x+18)+(2x-3)(x-4)=0
We get rid of parentheses
2x^2-12x-3x+(2x-3)(x-4)+18=0
We multiply parentheses ..
2x^2+(+2x^2-8x-3x+12)-12x-3x+18=0
We add all the numbers together, and all the variables
2x^2+(+2x^2-8x-3x+12)-15x+18=0
We get rid of parentheses
2x^2+2x^2-8x-3x-15x+12+18=0
We add all the numbers together, and all the variables
4x^2-26x+30=0
a = 4; b = -26; c = +30;
Δ = b2-4ac
Δ = -262-4·4·30
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-14}{2*4}=\frac{12}{8} =1+1/2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+14}{2*4}=\frac{40}{8} =5 $

See similar equations:

| X+5/4=3/4•x | | 9(3n+4)=6(9n+6)+1 | | -6x+30=90 | | 9(3n+4=6(9n+6)+1 | | 45×n=27 | | -4(3t-3)+6t=3t-2 | | 26x32=x | | |8v-9|=-14 | | 9x2-424x+3600=0 | | -4(x-5)+4=24 | | (7x-3)/5=5 | | 3x-4=16-3x-4 | | 8x-6=2x-4+3 | | 4x-6=3+4-3 | | X2-y2=47 | | 2x+6=16-4 | | 0=8-9m²+13m | | 5u+2=3u+14 | | 5x²=5x+6 | | H(x)=2x^2-20x-50 | | Z(2z-7)=4(Z-3) | | (x-6)/2=3 | | x^2-6x+19=5x-5 | | 2(5x^2+11x-8)=16 | | 96^2=4^x | | x^2-12x+19=-2x-5 | | 15^y+7=9 | | 2W+l=152 | | 5x×7=67 | | 2r-5=4r+40 | | 2/3n=2.2/5 | | 2r-10=4r+10 |

Equations solver categories