(2x-3)*(x-1)=x+1

Simple and best practice solution for (2x-3)*(x-1)=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)*(x-1)=x+1 equation:



(2x-3)(x-1)=x+1
We move all terms to the left:
(2x-3)(x-1)-(x+1)=0
We get rid of parentheses
(2x-3)(x-1)-x-1=0
We multiply parentheses ..
(+2x^2-2x-3x+3)-x-1=0
We add all the numbers together, and all the variables
(+2x^2-2x-3x+3)-1x-1=0
We get rid of parentheses
2x^2-2x-3x-1x+3-1=0
We add all the numbers together, and all the variables
2x^2-6x+2=0
a = 2; b = -6; c = +2;
Δ = b2-4ac
Δ = -62-4·2·2
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{5}}{2*2}=\frac{6-2\sqrt{5}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{5}}{2*2}=\frac{6+2\sqrt{5}}{4} $

See similar equations:

| -x/4=-44 | | 12x–8(–3x+10)=24x+16 | | 4x+4=-64-9x | | 7x+2x=6.2 | | 25+10x=9+6x | | 1/7x+2=-1 | | 3k-5=-10k-5 | | -2x-6-x=-27 | | 3x+1+5x+19=90 | | 2+4x=6x-7 | | 9-4x=-10x-5 | | c+21=-5c-3 | | x+114=3x-6 | | -23+7x=4x+21 | | 19x+1+154=360 | | 16+8x=3x-4 | | 2/5x=6/20 | | -9a-7=a+223 | | 32=7x-2 | | 17x+2=-1 | | |1+7x|=57 | | 7x^2+4x-51=0 | | 4x+4+5x+9=148 | | 3b-12=14 | | 6z=-4z+10 | | 12+x=-4x+8x | | 5x+4(x-6)=3(x-8) | | p-168=-9p-8 | | 6(4^(4x))=(1)/(4096) | | 3(3x-9)=30x | | -8x+10=x-17 | | 6x-3=1.5 |

Equations solver categories