(2x-3)3=(2x-3)(2x-3)2.

Simple and best practice solution for (2x-3)3=(2x-3)(2x-3)2. equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-3)3=(2x-3)(2x-3)2. equation:



(2x-3)3=(2x-3)(2x-3)2.
We move all terms to the left:
(2x-3)3-((2x-3)(2x-3)2.)=0
We multiply parentheses
6x-((2x-3)(2x-3)2.)-9=0
We multiply parentheses ..
-((+4x^2-6x-6x+9)2.)+6x-9=0
We calculate terms in parentheses: -((+4x^2-6x-6x+9)2.), so:
(+4x^2-6x-6x+9)2.
We multiply parentheses
8x^2-12x-12x+18
We add all the numbers together, and all the variables
8x^2-24x+18
Back to the equation:
-(8x^2-24x+18)
We add all the numbers together, and all the variables
6x-(8x^2-24x+18)-9=0
We get rid of parentheses
-8x^2+6x+24x-18-9=0
We add all the numbers together, and all the variables
-8x^2+30x-27=0
a = -8; b = 30; c = -27;
Δ = b2-4ac
Δ = 302-4·(-8)·(-27)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6}{2*-8}=\frac{-36}{-16} =2+1/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6}{2*-8}=\frac{-24}{-16} =1+1/2 $

See similar equations:

| z/6+9=-22 | | 13x^2+5x=0 | | (T-1)-2(t-1)=20 | | -24=1+3x | | 12x(4x+10)=54 | | 11x=63+2x | | 4y+9=7 | | K+4K=3(k+2) | | 25x^2+1=10 | | z/6+9=22 | | 10+3(x-13)=-5(1-x)+14= | | 16/6=n/15 | | k/2+3=41 | | 3/5=13/b | | K+4K=(k+2) | | 7(m-6)+(2+m)=-4+8m | | 2m=3m–6 | | 7x+22=-13 | | y^2+2y+6y=0 | | 2+125f=10-2.75f | | 2/3x+5=-3x-3 | | 8+8y=9+7+9y | | 20x+35x-9x=20+X | | -10+6f=5+3f | | 157+x=180 | | 10(x+6)=-12(x-8) | | -5(-y-2)=25 | | x=15=28 | | 1^2x-12=-3^4x+7 | | 4m+8/7=7m+5/10 | | 74-x=90-2x | | 5/2x=151/2 |

Equations solver categories