(2x-4)+(5x-13)(x+9)=189

Simple and best practice solution for (2x-4)+(5x-13)(x+9)=189 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-4)+(5x-13)(x+9)=189 equation:



(2x-4)+(5x-13)(x+9)=189
We move all terms to the left:
(2x-4)+(5x-13)(x+9)-(189)=0
We get rid of parentheses
2x+(5x-13)(x+9)-4-189=0
We multiply parentheses ..
(+5x^2+45x-13x-117)+2x-4-189=0
We add all the numbers together, and all the variables
(+5x^2+45x-13x-117)+2x-193=0
We get rid of parentheses
5x^2+45x-13x+2x-117-193=0
We add all the numbers together, and all the variables
5x^2+34x-310=0
a = 5; b = 34; c = -310;
Δ = b2-4ac
Δ = 342-4·5·(-310)
Δ = 7356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7356}=\sqrt{4*1839}=\sqrt{4}*\sqrt{1839}=2\sqrt{1839}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{1839}}{2*5}=\frac{-34-2\sqrt{1839}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{1839}}{2*5}=\frac{-34+2\sqrt{1839}}{10} $

See similar equations:

| -3x-3-4x-6=0 | | 340+5x=650-8 | | n+-9=15 | | -2h=-3h-5 | | 4(9.75h–3)=222 | | 3x²-54x=0* | | -11x=-17 | | 8(14x+6)=160 | | 12x+22+10x-6+7x+18=180 | | 18/27=x/15 | | 4) 4(9.75h–3)=222 | | -1=19+5s | | 0.05x+3-0.02x=47 | | -9a-10(a-1)=10(6a+1) | | (-x-9)×1=(9x-3)(-1) | | x+0.5=8.5 | | 18x+-36+26=-10 | | 5s=8+4s | | 1.45x=57 | | −3(x+3)=−3x–9 | | 2(3x–1)=–20 | | 18.2+y=–16.8 | | 7=8+a/2 | | 0.05x+3-0.02=42 | | n+3.1=5 | | −11x=−77 | | 5.1g+4=3.1+10 | | -9p+17=62 | | 180=3x+4=2x+3x | | 3x=223 | | r-1823=23102 | | 11n+14=95−16n |

Equations solver categories