(2x-5)(5x+3)=(2x-5)(2x-1)

Simple and best practice solution for (2x-5)(5x+3)=(2x-5)(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-5)(5x+3)=(2x-5)(2x-1) equation:



(2x-5)(5x+3)=(2x-5)(2x-1)
We move all terms to the left:
(2x-5)(5x+3)-((2x-5)(2x-1))=0
We multiply parentheses ..
(+10x^2+6x-25x-15)-((2x-5)(2x-1))=0
We calculate terms in parentheses: -((2x-5)(2x-1)), so:
(2x-5)(2x-1)
We multiply parentheses ..
(+4x^2-2x-10x+5)
We get rid of parentheses
4x^2-2x-10x+5
We add all the numbers together, and all the variables
4x^2-12x+5
Back to the equation:
-(4x^2-12x+5)
We get rid of parentheses
10x^2-4x^2+6x-25x+12x-15-5=0
We add all the numbers together, and all the variables
6x^2-7x-20=0
a = 6; b = -7; c = -20;
Δ = b2-4ac
Δ = -72-4·6·(-20)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-23}{2*6}=\frac{-16}{12} =-1+1/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+23}{2*6}=\frac{30}{12} =2+1/2 $

See similar equations:

| 1/2(6x-3)=5(2x-1) | | F(x)=12x³+27x | | 1/6x^2+4/3-2/3=0 | | F(x)=2x-3/12x³+27x | | 2x^2-24=40 | | )⅔x+5=⅕-2x​ | | 4x-3=x+20 | | 5(x-1)=4(x–3) | | 9+2.5x=5.5x | | 18(3-x)+15=175 | | 2x+50=6x-30+20 | | 54/5=4+n/15 | | 4(x-1)=28. | | 15y+31= | | -110+x=-80 | | 12p-44=100 | | 2x^2−17x+8=0 | | 4-k/k=3 | | -5x+15=125/5 | | 260+5x=650-8x | | .20x+x=1603 | | (-2x)+26=4x-18 | | 5t-15=40 | | 5t−15=40 | | =2x3.14(4)^2+2x3.14(4)(5) | | 100=8b+4 | | 5(x-4)=-150 | | A=2x3.14(4)^2+2x3.14(4)(5) | | 10=40j | | 2x-1.5=1.5x | | |-7x|=3x+16 | | 110x+290=20 |

Equations solver categories