(2x-5)/7x+(x+1)/3x=-4

Simple and best practice solution for (2x-5)/7x+(x+1)/3x=-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-5)/7x+(x+1)/3x=-4 equation:



(2x-5)/7x+(x+1)/3x=-4
We move all terms to the left:
(2x-5)/7x+(x+1)/3x-(-4)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
(2x-5)/7x+(x+1)/3x+4=0
We calculate fractions
(6x^2-15x)/21x^2+(7x^2+7x)/21x^2+4=0
We multiply all the terms by the denominator
(6x^2-15x)+(7x^2+7x)+4*21x^2=0
Wy multiply elements
84x^2+(6x^2-15x)+(7x^2+7x)=0
We get rid of parentheses
84x^2+6x^2+7x^2-15x+7x=0
We add all the numbers together, and all the variables
97x^2-8x=0
a = 97; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·97·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*97}=\frac{0}{194} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*97}=\frac{16}{194} =8/97 $

See similar equations:

| (2x-5)/7x+(x+1)/3x=-4 | | (p+400)/100=3 | | 25a-6=24 | | 25a-6=24 | | C=3.14x46.5x46.5 | | C=3.14x46.5x46.5 | | 25a-6=24 | | 25a-6=24 | | 25a-6=24 | | -6(u+2)=-9u+18 | | -6(u+2)=-9u+18 | | -6(u+2)=-9u+18 | | x2-18x+30=0 | | 25a-6=24 | | x2-18x+30=0 | | 25a-6=24 | | -6(u+2)=-9u+18 | | 25a-6=24 | | 8x×3=53 | | 8x×3=53 | | 8x×3=53 | | 8x×3=53 | | 8x×3=53 | | 8x×3=53 | | 8x×3=53 | | 8x×3=53 | | 8x×3=53 | | 8x×3=53 | | y=-1.5*8+15 | | 5-10x=-1+x | | 2.1+3.5y=10.5 | | 2.1+3.5y=10.5 |

Equations solver categories