(2x-5/2)(x+2)-(x+4)(x-5/2)+5=0

Simple and best practice solution for (2x-5/2)(x+2)-(x+4)(x-5/2)+5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-5/2)(x+2)-(x+4)(x-5/2)+5=0 equation:



(2x-5/2)(x+2)-(x+4)(x-5/2)+5=0
Domain of the equation: 2)(x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+2x-5/2)(x+2)-(x+4)(+x-5/2)+5=0
We multiply parentheses ..
(+2x^2+4x-5x^2-5/2*2)-(x+4)(+x-5/2)+5=0
We calculate fractions
(-3x^2+4x-10)/()+(-1x^2+16x+80)/()+5=0
We multiply all the terms by the denominator
(-3x^2+4x-10)+(-1x^2+16x+80)+5*()=0
We add all the numbers together, and all the variables
(-3x^2+4x-10)+(-1x^2+16x+80)=0
We get rid of parentheses
-3x^2-1x^2+4x+16x-10+80=0
We add all the numbers together, and all the variables
-4x^2+20x+70=0
a = -4; b = 20; c = +70;
Δ = b2-4ac
Δ = 202-4·(-4)·70
Δ = 1520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1520}=\sqrt{16*95}=\sqrt{16}*\sqrt{95}=4\sqrt{95}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{95}}{2*-4}=\frac{-20-4\sqrt{95}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{95}}{2*-4}=\frac{-20+4\sqrt{95}}{-8} $

See similar equations:

| 5x3=9+2x | | 2x-3+4x=3(6x-3)+2 | | 7–3x=2x+7–5x | | -4-8z-75=6z-2-3z | | 4w-2=3w+11 | | (2x-7/2)(x+2)-(x+4)(x-7/2)+5=0 | | x2-6x+13=3x-5 | | -8a-9=-9a-8 | | -8/11x=24 | | 12d-19=2d-6 | | x2–4x=0 | | -20=-5(u+1) | | -8/11x=40 | | -8-4n=12 | | z^2+16z=0 | | z2+16z=0 | | -5-8=20-y | | (2x-3)=x | | -1/5b-3.3=-2 | | 11x+8=6x+8 | | 4-10x=21 | | (2x-3)(x+2)-(x+4)(x-3)+5=0 | | X^2-6x-21=6 | | 7x=14+5x= | | x/3-6=-11 | | 4y-9=7y+15 | | 7x=14+5×= | | 6x^=112+4x | | y^2-20y=-132 | | 6y+2=8y-6+3y | | y+10=66-6y | | v={-18,1} |

Equations solver categories