(2x-6)(x+3)=180

Simple and best practice solution for (2x-6)(x+3)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-6)(x+3)=180 equation:



(2x-6)(x+3)=180
We move all terms to the left:
(2x-6)(x+3)-(180)=0
We multiply parentheses ..
(+2x^2+6x-6x-18)-180=0
We get rid of parentheses
2x^2+6x-6x-18-180=0
We add all the numbers together, and all the variables
2x^2-198=0
a = 2; b = 0; c = -198;
Δ = b2-4ac
Δ = 02-4·2·(-198)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{11}}{2*2}=\frac{0-12\sqrt{11}}{4} =-\frac{12\sqrt{11}}{4} =-3\sqrt{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{11}}{2*2}=\frac{0+12\sqrt{11}}{4} =\frac{12\sqrt{11}}{4} =3\sqrt{11} $

See similar equations:

| 175.84=2(3.14)5 | | 18=2(v+4)-7v | | 2=-6c^2+8c+6 | | (4x-7)(x+12)=180 | | -32=5(x-8)-7x | | 30+4x-2=180 | | 13=3(w+7)-7w | | -4y+2(y-5)=6 | | 1/2a=22 | | 13x-5=32 | | 7d+6+37=180 | | 3.12^n-3=60 | | w+8–3=–1 | | –3d=–8−d | | 2(n−6)−6=–4 | | 40+20x+5+9x-2=180 | | s/35=1/5 | | 3(p+2)=–6 | | 6+25x+19x-3=180 | | (5x-2)(5x+2)=180 | | 4/5x=33/7 | | 6x7+x5=62 | | 80.6=b/6b= | | 3(z+2)−3=6 | | 2.7^y=24 | | 16÷2-4x3= | | C=25.00-0.25x | | 5(4-r)=10 | | (-28)+x=-20 | | x(-3)=36 | | -45=9/5r | | 5.6-t/3.4=-1/4 |

Equations solver categories