(2x-6)-1/3x=5/3x+4

Simple and best practice solution for (2x-6)-1/3x=5/3x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-6)-1/3x=5/3x+4 equation:



(2x-6)-1/3x=5/3x+4
We move all terms to the left:
(2x-6)-1/3x-(5/3x+4)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x+4)!=0
x∈R
We get rid of parentheses
2x-1/3x-5/3x-6-4=0
We multiply all the terms by the denominator
2x*3x-6*3x-4*3x-1-5=0
We add all the numbers together, and all the variables
2x*3x-6*3x-4*3x-6=0
Wy multiply elements
6x^2-18x-12x-6=0
We add all the numbers together, and all the variables
6x^2-30x-6=0
a = 6; b = -30; c = -6;
Δ = b2-4ac
Δ = -302-4·6·(-6)
Δ = 1044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1044}=\sqrt{36*29}=\sqrt{36}*\sqrt{29}=6\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{29}}{2*6}=\frac{30-6\sqrt{29}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{29}}{2*6}=\frac{30+6\sqrt{29}}{12} $

See similar equations:

| 0.09(x+2,000)=4,500 | | 1.4=1.4y+42 | | 60+x=-45 | | 13/17=y/7 | | -(6x+8)=-(2x-4) | | -16+x=20 | | u-9.83=1.6 | | 2t+2=12 | | 3x/4+2x=11 | | 3(y–51)=93y= | | -7v-5+6v=19 | | 12=2*x | | 6(6+5r)-1=-2(5r+5)-5r | | 2y=4y=48 | | 12=1.5y | | -18=-9(r-2) | | 2.1+0.1x=0.7x-5.1 | | 3/4(y-9)=15 | | -6(q-9)=18 | | -3(1-7n)=-3+2n | | 14+2(4g-30=40 | | -3.4=x/3+1.4 | | u4– -15= 16 | | 36=-6(y+8)+18 | | 2/3(x+18)=56 | | 1.37x=6.85 | | 5+3(2x-)=5+6x-21 | | -45=5(b-3) | | -36-6x=-3(-x-6) | | z+6÷3=8 | | -45=5(b–3) | | 5s-6s=8 |

Equations solver categories