(2x-7)(3-2x)=(3-2x)(5-3x)

Simple and best practice solution for (2x-7)(3-2x)=(3-2x)(5-3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x-7)(3-2x)=(3-2x)(5-3x) equation:



(2x-7)(3-2x)=(3-2x)(5-3x)
We move all terms to the left:
(2x-7)(3-2x)-((3-2x)(5-3x))=0
We add all the numbers together, and all the variables
(2x-7)(-2x+3)-((-2x+3)(-3x+5))=0
We multiply parentheses ..
(-4x^2+6x+14x-21)-((-2x+3)(-3x+5))=0
We calculate terms in parentheses: -((-2x+3)(-3x+5)), so:
(-2x+3)(-3x+5)
We multiply parentheses ..
(+6x^2-10x-9x+15)
We get rid of parentheses
6x^2-10x-9x+15
We add all the numbers together, and all the variables
6x^2-19x+15
Back to the equation:
-(6x^2-19x+15)
We get rid of parentheses
-4x^2-6x^2+6x+14x+19x-21-15=0
We add all the numbers together, and all the variables
-10x^2+39x-36=0
a = -10; b = 39; c = -36;
Δ = b2-4ac
Δ = 392-4·(-10)·(-36)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-9}{2*-10}=\frac{-48}{-20} =2+2/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+9}{2*-10}=\frac{-30}{-20} =1+1/2 $

See similar equations:

| -11-d=46 | | 3x+16=4x+5x-2 | | -3w+5=20 | | –8=9b–7b | | 13-b=9 | | 3x−1−x = x+5−x | | -4.8x=-21.6 | | w+3=122 | | 3x−1 = x+5 | | 10+-3p=4 | | -5+3x=3x | | -4.8x=-32.2 | | 6.4(x-1.75)=12.8 | | |v|+8=15 | | h+47=83 | | 3t-6=18t= | | x=-8+0.15/0.2 | | 100=e/121 | | 1,369,000,000=1.369*10^n | | 2(-1)+6y=-20 | | 2m+12+4m=24 | | 100=e/√121 | | k=177 | | 4.8x=-21.6 | | 5+t=65 | | 9x+4=7x12 | | (4x+11)=(6x=19) | | 24=d/3^3 | | 4v+-16=0 | | k+5+2k=−16 | | 24=d/33 | | -1+4m=3m-10 |

Equations solver categories