(2x2+10x+12)/2=72

Simple and best practice solution for (2x2+10x+12)/2=72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x2+10x+12)/2=72 equation:



(2x^2+10x+12)/2=72
We move all terms to the left:
(2x^2+10x+12)/2-(72)=0
We multiply all the terms by the denominator
(2x^2+10x+12)-72*2=0
We add all the numbers together, and all the variables
(2x^2+10x+12)-144=0
We get rid of parentheses
2x^2+10x+12-144=0
We add all the numbers together, and all the variables
2x^2+10x-132=0
a = 2; b = 10; c = -132;
Δ = b2-4ac
Δ = 102-4·2·(-132)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1156}=34$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-34}{2*2}=\frac{-44}{4} =-11 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+34}{2*2}=\frac{24}{4} =6 $

See similar equations:

| 5z/2+z/3=17/2 | | 5z/4+z/5=29/2 | | 7t+35=1/10 | | 6x-33=8x | | 5z/4+z-5=29/2 | | (10X2+10x+12)/2=72 | | .5x^2+.5x+0=15 | | 6(3x=1)=24 | | 10X2+10x+12=72 | | a+7a–2a+a–4=a | | 4(2-x)=3x+8-7x | | 8y+3=6y-9 | | 2/3m=-7/13 | | 2/3m=7/13 | | 5x+1.6=7.5x+3.6 | | x+(2x-3)+(3x-4)=4x | | 4.75-3.5x=-0.25x+1.5 | | 0.8w-0.6w+0.4w=-3 | | 8x−1=7x−6 | | 1/2x-11/4=2/3x | | 2y+y+5,y=3 | | x/100=15/30 | | d=-1.32+0.1 | | 3t+1+2t-4t=2+3 | | X+0.09x=1080+x | | p+11.4=-5.9 | | 2y+y+5,y=5 | | 6x–7=2x+13 | | -4(1-2x)=3x+6 | | 10x+4=-3x+5 | | -5x+8=7x+0 | | 3(4y-4)=10 |

Equations solver categories