(2x2+3x+4)=(x2-5x-3)

Simple and best practice solution for (2x2+3x+4)=(x2-5x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x2+3x+4)=(x2-5x-3) equation:



(2x^2+3x+4)=(x2-5x-3)
We move all terms to the left:
(2x^2+3x+4)-((x2-5x-3))=0
We add all the numbers together, and all the variables
-((+x^2-5x-3))+(2x^2+3x+4)=0
We get rid of parentheses
-((+x^2-5x-3))+2x^2+3x+4=0
We calculate terms in parentheses: -((+x^2-5x-3)), so:
(+x^2-5x-3)
We get rid of parentheses
x^2-5x-3
Back to the equation:
-(x^2-5x-3)
We add all the numbers together, and all the variables
2x^2+3x-(x^2-5x-3)+4=0
We get rid of parentheses
2x^2-x^2+3x+5x+3+4=0
We add all the numbers together, and all the variables
x^2+8x+7=0
a = 1; b = 8; c = +7;
Δ = b2-4ac
Δ = 82-4·1·7
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6}{2*1}=\frac{-14}{2} =-7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6}{2*1}=\frac{-2}{2} =-1 $

See similar equations:

| 245=-v+52 | | x/3+4=x-14 | | -2x+5x-2=0 | | 125^x=1/3125 | | 7y-3+7(1/2)=4 | | -7=2(z/3+5)= | | 8(s+2)=5s+11 | | 5y×23=3 | | -8(3h-5)=30 | | -14+x=-39 | | 1/4×(7+3g)=-g/8 | | 7y-3+7y=4 | | 15x+20=10x+35 | | 11n-3=n-14 | | 8d-4d-6d-8=3d | | (x+7)8=184 | | 5d-3=2d+21 | | -5s-7-4s=18 | | H=2t^2+4t+6 | | c=1156 | | 1156=c | | 7d+6-9=-30 | | -7+4m+10=5-2 | | 4/7w=12 | | 4u=16/3 | | 1/3x^2+12=60 | | 8-4u=48 | | 8^x=5001 | | 6/5y=24 | | 2x-(5x-10)=25 | | 7^2x=49^5 | | -6(8k-5=-22+3k |

Equations solver categories