(2x2+4)/(2x+9)=5

Simple and best practice solution for (2x2+4)/(2x+9)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x2+4)/(2x+9)=5 equation:



(2x^2+4)/(2x+9)=5
We move all terms to the left:
(2x^2+4)/(2x+9)-(5)=0
Domain of the equation: (2x+9)!=0
We move all terms containing x to the left, all other terms to the right
2x!=-9
x!=-9/2
x!=-4+1/2
x∈R
We multiply all the terms by the denominator
(2x^2+4)-5*(2x+9)=0
We multiply parentheses
(2x^2+4)-10x-45=0
We get rid of parentheses
2x^2-10x+4-45=0
We add all the numbers together, and all the variables
2x^2-10x-41=0
a = 2; b = -10; c = -41;
Δ = b2-4ac
Δ = -102-4·2·(-41)
Δ = 428
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{428}=\sqrt{4*107}=\sqrt{4}*\sqrt{107}=2\sqrt{107}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{107}}{2*2}=\frac{10-2\sqrt{107}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{107}}{2*2}=\frac{10+2\sqrt{107}}{4} $

See similar equations:

| 2y+3(0)=3 | | 5|2x+3=21|2 | | 2y+3(-1)=3 | | 9^x-3=2 | | 9–36x2=8 | | 3c/4=12 | | 2y+3(-2)=3 | | 2y+3(-3)=3 | | (7x-2)=9 | | (7x-2)=8 | | 2y+3-3=3 | | 1/3x-1/2=3/4 | | 2y+3-2=3 | | 2y+3-1=3 | | (2x+7)(x-10=0 | | 92-4x=-2(x+7) | | 2^(2z+1)-2^(z+1)=112 | | 13x-7+15=(-49)+8x | | 4(x+1)+3x=x+4 | | X^2+16(4+x)=0 | | 6x-8-5x=0 | | -26-4x-x=14-5x+x | | 9-3x=48+(-5) | | 2(3x+5x)+3=-16 | | 3x-3×3x=54 | | 6j+3=6 | | 3(x+5)-4=8 | | xвкубе+4xвквадрате+4x=0 | | 2/(3x-1)+(3/3x+1)=5/3x | | 5x-11=4-3x | | 17-7+x=7+8-1 | | 2/3(x)-4x/9=5/6 |

Equations solver categories