If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2y-1)y=0
We multiply parentheses
2y^2-1y=0
a = 2; b = -1; c = 0;
Δ = b2-4ac
Δ = -12-4·2·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-1}{2*2}=\frac{0}{4} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+1}{2*2}=\frac{2}{4} =1/2 $
| (x+1/x)^2+3(x+1/x)+2=0 | | 4x+11=12x-45 | | X/2+x/3+x/6=180 | | 3n^2-6n-7=2 | | 3n^2-6n-7=0 | | 48/14+4y=24 | | 3x+4=4x-18 | | 2y+6=5y-15 | | 5p/8+10=2 | | n=222n=9 | | -9z+1=4 | | 5(2s-8)=-21 | | 3a/5+2=0 | | x/2+3/2=3x/2-1/2 | | 12-2x+6=10+2x | | Y=-3x+25= | | 5x^2–40x+7=15 | | x+9.1=6+9 | | 3x(-4)=15 | | 7x+9=(-75) | | 7x+9=(-75 | | 6x=(-1) | | 2x-(x+1)=39 | | 100+4u/3=5u+6/4+6 | | 2t-5=5(1,3,4,5) | | 2(4x+3)=10x-3 | | 2(4x+3)=10x+3 | | (x^2-6+9/x^2)-6/x-2x-12=0 | | 4(5x-6)=26 | | 3(3x-2=2(4x+3) | | 5(4x-5)=156 | | X^2+130^x+1500=0 |