(2y-7)12y-5=-3

Simple and best practice solution for (2y-7)12y-5=-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2y-7)12y-5=-3 equation:


Simplifying
(2y + -7) * 12y + -5 = -3

Reorder the terms:
(-7 + 2y) * 12y + -5 = -3

Reorder the terms for easier multiplication:
12y(-7 + 2y) + -5 = -3
(-7 * 12y + 2y * 12y) + -5 = -3
(-84y + 24y2) + -5 = -3

Reorder the terms:
-5 + -84y + 24y2 = -3

Solving
-5 + -84y + 24y2 = -3

Solving for variable 'y'.

Reorder the terms:
-5 + 3 + -84y + 24y2 = -3 + 3

Combine like terms: -5 + 3 = -2
-2 + -84y + 24y2 = -3 + 3

Combine like terms: -3 + 3 = 0
-2 + -84y + 24y2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-1 + -42y + 12y2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-1 + -42y + 12y2)' equal to zero and attempt to solve: Simplifying -1 + -42y + 12y2 = 0 Solving -1 + -42y + 12y2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. -0.08333333333 + -3.5y + y2 = 0 Move the constant term to the right: Add '0.08333333333' to each side of the equation. -0.08333333333 + -3.5y + 0.08333333333 + y2 = 0 + 0.08333333333 Reorder the terms: -0.08333333333 + 0.08333333333 + -3.5y + y2 = 0 + 0.08333333333 Combine like terms: -0.08333333333 + 0.08333333333 = 0.00000000000 0.00000000000 + -3.5y + y2 = 0 + 0.08333333333 -3.5y + y2 = 0 + 0.08333333333 Combine like terms: 0 + 0.08333333333 = 0.08333333333 -3.5y + y2 = 0.08333333333 The y term is -3.5y. Take half its coefficient (-1.75). Square it (3.0625) and add it to both sides. Add '3.0625' to each side of the equation. -3.5y + 3.0625 + y2 = 0.08333333333 + 3.0625 Reorder the terms: 3.0625 + -3.5y + y2 = 0.08333333333 + 3.0625 Combine like terms: 0.08333333333 + 3.0625 = 3.14583333333 3.0625 + -3.5y + y2 = 3.14583333333 Factor a perfect square on the left side: (y + -1.75)(y + -1.75) = 3.14583333333 Calculate the square root of the right side: 1.773649721 Break this problem into two subproblems by setting (y + -1.75) equal to 1.773649721 and -1.773649721.

Subproblem 1

y + -1.75 = 1.773649721 Simplifying y + -1.75 = 1.773649721 Reorder the terms: -1.75 + y = 1.773649721 Solving -1.75 + y = 1.773649721 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.75' to each side of the equation. -1.75 + 1.75 + y = 1.773649721 + 1.75 Combine like terms: -1.75 + 1.75 = 0.00 0.00 + y = 1.773649721 + 1.75 y = 1.773649721 + 1.75 Combine like terms: 1.773649721 + 1.75 = 3.523649721 y = 3.523649721 Simplifying y = 3.523649721

Subproblem 2

y + -1.75 = -1.773649721 Simplifying y + -1.75 = -1.773649721 Reorder the terms: -1.75 + y = -1.773649721 Solving -1.75 + y = -1.773649721 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.75' to each side of the equation. -1.75 + 1.75 + y = -1.773649721 + 1.75 Combine like terms: -1.75 + 1.75 = 0.00 0.00 + y = -1.773649721 + 1.75 y = -1.773649721 + 1.75 Combine like terms: -1.773649721 + 1.75 = -0.023649721 y = -0.023649721 Simplifying y = -0.023649721

Solution

The solution to the problem is based on the solutions from the subproblems. y = {3.523649721, -0.023649721}

Solution

y = {3.523649721, -0.023649721}

See similar equations:

| 12+2y=11 | | x-5+3x=7x+4 | | 4x+3x=9x+6 | | z^2+(4-3i)z+1-5i=0 | | 96t-9.8t^2=h | | 2c^3+4c^2-6c=0 | | 7x^2+23x+18=0 | | 4x^2+6x-6x=0 | | 12-4v=(3-6v) | | 6x+3(x-4)=7(x-3) | | (6-2c)3c-3=27 | | d^2+11d+18= | | -2y+7=4y-5 | | 20-(x+8)=8x-6 | | (5+x)(5+x)= | | 4w-28+11w+13=180 | | -7(1-x)+15=3(x+8) | | g(x)=x-4 | | -207=-9(-7n+2) | | -2y-16x=14 | | 31x=8x+69 | | 5(8-2)-8(8)=-34 | | 7-(2x-5)=9 | | 65+(10n+6n)=120 | | n^2-2n-63= | | 2+8/c=-10 | | x^2-97x=0 | | 3(-4+-2x+x^2)=0 | | 16=-4x+28 | | 10y+3y-3=24y+30 | | 4n+3(2n-4)=n | | 4m+2(m+1)=23 |

Equations solver categories