If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3)/(2)b+(b+45)+90+(2b-90)+b=540
We move all terms to the left:
(3)/(2)b+(b+45)+90+(2b-90)+b-(540)=0
Domain of the equation: 2b!=0We add all the numbers together, and all the variables
b!=0/2
b!=0
b∈R
b+3/2b+(b+45)+(2b-90)-450=0
We get rid of parentheses
b+3/2b+b+2b+45-90-450=0
We multiply all the terms by the denominator
b*2b+b*2b+2b*2b+45*2b-90*2b-450*2b+3=0
Wy multiply elements
2b^2+2b^2+4b^2+90b-180b-900b+3=0
We add all the numbers together, and all the variables
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $
| -5.2(x-3.5)=15.6 | | 2p-2.5+3p=35 | | 5(v+6)=-4(3v-7)+5 | | 8=a/7+2 | | 6(3x-4/3)=0 | | 3x-5(x-2=-9+2x-1 | | (1/6d)+2/3=1/4(d-2) | | 2=21-x/x | | (50-32)5/9=c | | 14+(5/7x)-20=4(1/7x-1) | | 6+5x=-3+2x | | 6t-8-4t=10 | | -10c-5.5+9c=2.5 | | 2(u-3)=-3u-11 | | -7(1-6b)=-217 | | 40-7x+4x-60=-104 | | 2.5x=7.5x | | -24p-8p=4p | | 4(y+4)-7y=37 | | 40/x=4/39 | | X+12=2(x+12)-4 | | 2b^2-4b+1=0 | | -2(x+6)=3x+4 | | 10.16=4k | | 6p+9-4p=-91 | | 30/4x=1024 | | 17.5+.16x=33 | | H+n/2=3n/2 | | 1/2(2x+2)=2x-2 | | 7/15=x/45 | | 0=-2.7x^2+30x+6.5 | | (7x+1)+(9x+5)=180 |