(3)=x2+1

Simple and best practice solution for (3)=x2+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3)=x2+1 equation:



(3)=x2+1
We move all terms to the left:
(3)-(x2+1)=0
We add all the numbers together, and all the variables
-(+x^2+1)+3=0
We get rid of parentheses
-x^2-1+3=0
We add all the numbers together, and all the variables
-1x^2+2=0
a = -1; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-1)·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-1}=\frac{0-2\sqrt{2}}{-2} =-\frac{2\sqrt{2}}{-2} =-\frac{\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-1}=\frac{0+2\sqrt{2}}{-2} =\frac{2\sqrt{2}}{-2} =\frac{\sqrt{2}}{-1} $

See similar equations:

| 12x+9=7x-8 | | 3(x^2-22x+114)=0 | | 11=5y-73 | | (-1)=3x-1+(4)x+1 | | x+4(3-x)=6 | | -7/4r=-35/16 | | (2k+4)+(k−3)=0 | | 16-2(-a+4)=5+2a | | 6x=9(6+x) | | 16+a=2a | | -19r+-33=-641 | | 11/12x=1 | | g-0.24g-0.08g=1171.3 | | -11=-11x+11 | | 59-(3x+5)=5x | | 1/4t-7=6 | | 24v-38=130 | | 115-7w=66 | | 2r/6=-15 | | 3n-6+5n+4=8+2n+2 | | 2(2y–4)=2 3(9y+3) | | (3)=3x-1 | | y/17+2y=25/12 | | 2(2y–4)=2 3(9y+3) | | 3n-6+5n+4=8+2 | | x/4+x/9=9/4 | | (x-1)(x-8)+12=0 | | X+18/12=2/4x | | 3-5x+2=5-4x+9-10x | | 9*2x*0.88=96 | | 4x²=576, | | x=2(10-x)+ |

Equations solver categories