(3+2t)-(8+1)=2/t

Simple and best practice solution for (3+2t)-(8+1)=2/t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3+2t)-(8+1)=2/t equation:



(3+2t)-(8+1)=2/t
We move all terms to the left:
(3+2t)-(8+1)-(2/t)=0
Domain of the equation: t)!=0
t!=0/1
t!=0
t∈R
We add all the numbers together, and all the variables
(2t+3)-(+2/t)-9=0
We get rid of parentheses
2t-2/t+3-9=0
We multiply all the terms by the denominator
2t*t+3*t-9*t-2=0
We add all the numbers together, and all the variables
-6t+2t*t-2=0
Wy multiply elements
2t^2-6t-2=0
a = 2; b = -6; c = -2;
Δ = b2-4ac
Δ = -62-4·2·(-2)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{13}}{2*2}=\frac{6-2\sqrt{13}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{13}}{2*2}=\frac{6+2\sqrt{13}}{4} $

See similar equations:

| x^2-1000x+40=0 | | 3=z/7.3 | | 3.6x=2.052 | | 6n-17=8n-26 | | (6+x)-(8-2x)=0 | | x=4+2(10-4•6) | | 8x+7=-3+5x+16 | | 200-x=100 | | 4(x+4)-6=6x-2(-4+x) | | 457-x=222 | | b-18÷3=-10 | | 1/25=5x+4 | | -3y-15=5y+9 | | -x+15=x-13 | | 10x-24=6x-16 | | -4x-8=-6x-16 | | -4-5x=36 | | 14x-21=7x+35 | | 2x/3=-24 | | -4(2x-9)=11-(1+8x) | | 4(r+4)=7-2(1-2r) | | 4x-4=x+3=x-1 | | x+x+x/3=25 | | x/3+2x=25 | | 5x*2-4x-64=0 | | 0=-2.75x+11 | | (2/3)x+2=4 | | 0=2.75x+11 | | 0=23/4x+11 | | 15z-18=-20z+5 | | t+8=8/3 | | 2/3x-9=-6+35/3 |

Equations solver categories