(3-4)2=9x2-+16

Simple and best practice solution for (3-4)2=9x2-+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3-4)2=9x2-+16 equation:



(3-4)2=9x^2-+16
We move all terms to the left:
(3-4)2-(9x^2-+16)=0
We add all the numbers together, and all the variables
-(9x^2-+16)+(-1)2=0
We add all the numbers together, and all the variables
-(9x^2-+16)-2=0
We use the square of the difference formula
-(9x^2-16)-2=0
We get rid of parentheses
-9x^2+16-2=0
We add all the numbers together, and all the variables
-9x^2+14=0
a = -9; b = 0; c = +14;
Δ = b2-4ac
Δ = 02-4·(-9)·14
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{14}}{2*-9}=\frac{0-6\sqrt{14}}{-18} =-\frac{6\sqrt{14}}{-18} =-\frac{\sqrt{14}}{-3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{14}}{2*-9}=\frac{0+6\sqrt{14}}{-18} =\frac{6\sqrt{14}}{-18} =\frac{\sqrt{14}}{-3} $

See similar equations:

| d-35=95 | | 2d+1/6=6(1/3d+2) | | 3(+4)=5x-1 | | 2.3z-6=8+2.3z | | -11r=385 | | 10+x=3x-32 | | -2(a+3)=18 | | -94=v-594 | | -2(n-1)+5=7(1-n) | | 4x+x+8=6-3x | | (X-1)^2+3x=0 | | 6+c=11 | | 17t+5t-9t-19t+20t=-14 | | -2m=-2m+6(7-m) | | d/(-3)=0.76 | | 12(7-2v+5v=-68 | | 33/4x=57 | | m+m-2m+5m-2=18 | | 7+x-4=20 | | 75=4y-1 | | 7p−15=83 | | 5q-4q-1=13 | | -x/7+9=3 | | 4y+1=75 | | 227+n=510 | | -12m-(-17m)=-10 | | y−42=168 | | 13+2w=27 | | 3^2x+1=4^4-3x | | 2x-5=-6x+3 | | 2(70−x)=3x | | 4/10=m/15 |

Equations solver categories