(3-i)(4+7i)+3i(1-i)-1=0

Simple and best practice solution for (3-i)(4+7i)+3i(1-i)-1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3-i)(4+7i)+3i(1-i)-1=0 equation:



(3-i)(4+7i)+3i(1-i)-1=0
We add all the numbers together, and all the variables
(-1i+3)(7i+4)+3i(-1i+1)-1=0
We multiply parentheses
-3i^2+(-1i+3)(7i+4)+3i-1=0
We multiply parentheses ..
-3i^2+(-7i^2-4i+21i+12)+3i-1=0
We get rid of parentheses
-3i^2-7i^2-4i+21i+3i+12-1=0
We add all the numbers together, and all the variables
-10i^2+20i+11=0
a = -10; b = 20; c = +11;
Δ = b2-4ac
Δ = 202-4·(-10)·11
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$
$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{210}}{2*-10}=\frac{-20-2\sqrt{210}}{-20} $
$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{210}}{2*-10}=\frac{-20+2\sqrt{210}}{-20} $

See similar equations:

| 4m+3/3=5 | | 4(2w-1)=7w+1 | | (5+3i)(3+5i)=0 | | 8*9^(x-3)+4^(x-3)=3^(2x-4) | | (4+i)+(2-i)-(1-i)=0 | | H(x)=5x2-30x+30 | | (-1+2i)-(4-3i)=0 | | (2+5i)+(4+3i)=0 | | 42-x=-42 | | Q=60-0,3p | | 4x= 14x | | Q=30+0,2p | | X/1+3/x=13/2 | | (x-7)/(2)=(-3)/(x-2) | | 4(3x-2)=2-5 | | 8+4i/5=10 | | 90x=10 | | 20=3+13b/7 | | 4x=+7 | | 5x+3=8x4 | | (3x+4)=(4x+3) | | 5X-2=|13x-26| | | 0=-16t^2+29t-11 | | 0=-16t^2+24t-11 | | 35n=315 | | 5x-3x-2x=3 | | P(x)=0.04x^2+240x-1000 | | x+0.3x=17 | | 0=-16t^2+29t+36 | | 44+×=8x×2 | | 2(x-5)+5=-17 | | 8x+72=88 |

Equations solver categories