(3-i)/(5+2i)+7-4i

Simple and best practice solution for (3-i)/(5+2i)+7-4i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3-i)/(5+2i)+7-4i equation:


D( i )

2*i+5 = 0

2*i+5 = 0

2*i+5 = 0

2*i+5 = 0 // - 5

2*i = -5 // : 2

i = -5/2

i in (-oo:-5/2) U (-5/2:+oo)

(3-i)/(2*i+5)-(4*i)+7 = 0

(3-i)/(2*i+5)-4*i+7 = 0

(3-i)/(2*i+5)+(-4*i*(2*i+5))/(2*i+5)+(7*(2*i+5))/(2*i+5) = 0

7*(2*i+5)-4*i*(2*i+5)-i+3 = 0

14*i-8*i^2-21*i+3+35 = 0

38-8*i^2-7*i = 0

38-8*i^2-7*i = 0

38-8*i^2-7*i = 0

DELTA = (-7)^2-(-8*4*38)

DELTA = 1265

DELTA > 0

i = (1265^(1/2)+7)/(-8*2) or i = (7-1265^(1/2))/(-8*2)

i = (1265^(1/2)+7)/(-16) or i = (7-1265^(1/2))/(-16)

(i-((1265^(1/2)+7)/(-16)))*(i-((7-1265^(1/2))/(-16))) = 0

((i-((1265^(1/2)+7)/(-16)))*(i-((7-1265^(1/2))/(-16))))/(2*i+5) = 0

((i-((1265^(1/2)+7)/(-16)))*(i-((7-1265^(1/2))/(-16))))/(2*i+5) = 0 // * 2*i+5

(i-((1265^(1/2)+7)/(-16)))*(i-((7-1265^(1/2))/(-16))) = 0

( i-((1265^(1/2)+7)/(-16)) )

i-((1265^(1/2)+7)/(-16)) = 0 // + (1265^(1/2)+7)/(-16)

i = (1265^(1/2)+7)/(-16)

( i-((7-1265^(1/2))/(-16)) )

i-((7-1265^(1/2))/(-16)) = 0 // + (7-1265^(1/2))/(-16)

i = (7-1265^(1/2))/(-16)

i in { (1265^(1/2)+7)/(-16), (7-1265^(1/2))/(-16) }

See similar equations:

| 2k-(k-3)=1(k-51) | | 9x+7=-3(4-x) | | x^2+8x=-11 | | (3x/4)=(5x+6/2) | | 5(y-2)+1=7y+8 | | (x^2+4x)=0 | | 3(4-5)=52 | | -6(0.1x+0.5)-1.1=-0.5 | | 70=2(15)+2(x+12) | | 7x+9y=3 | | 3+5(2-x)=2(x+4) | | y=19.66666667-7 | | 3-4x=111 | | 9x^2-12x=-5 | | -(1-3x)+4x=-15 | | (14x^2+6x+10)-(2x^2+8)= | | -8(-2m-8)+1=-31+4m | | y=.4x+1.2 | | -5x=-63+2x | | W=F(r+A) | | 1/3x=14 | | 26=5x+10+3x | | y=3+2*3 | | y=3+2*2 | | x/3=-20 | | 3(x+9)=4x-13 | | y=3+2*1 | | y=3+2*0 | | y=3+2*-1 | | y=3+2*-2 | | 4(-1)+y=-7 | | y=2+2*3 |

Equations solver categories