(3/(5x))+(7/(2x))=1

Simple and best practice solution for (3/(5x))+(7/(2x))=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/(5x))+(7/(2x))=1 equation:



(3/(5x))+(7/(2x))=1
We move all terms to the left:
(3/(5x))+(7/(2x))-(1)=0
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/5x)+(+7/2x)-1=0
We get rid of parentheses
3/5x+7/2x-1=0
We calculate fractions
6x/10x^2+35x/10x^2-1=0
We multiply all the terms by the denominator
6x+35x-1*10x^2=0
We add all the numbers together, and all the variables
41x-1*10x^2=0
Wy multiply elements
-10x^2+41x=0
a = -10; b = 41; c = 0;
Δ = b2-4ac
Δ = 412-4·(-10)·0
Δ = 1681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1681}=41$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-41}{2*-10}=\frac{-82}{-20} =4+1/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+41}{2*-10}=\frac{0}{-20} =0 $

See similar equations:

| (11x-12)+(3x+18)=90 | | 0.1x+0.15(20-x)=(0.12)(20) | | u+3.88=6.71 | | p-7=71 | | 67=3.5q | | 0.10x+0.15(20-x)=(0.12)(20) | | 7x+4x=5 | | -8(x-5)=30-6x | | 0.10x+0.15(20+x)=(0.12)(20) | | 7x^2+8x+45x^2+65=0 | | h+86/2=-5 | | 0.10x+(0.15)(20)=0.12(20+x) | | 2(9)+9x=-18 | | 35x=17 | | e+1.2=2e+1.2=2 | | 2(3x+6)=-21+27 | | −5x+4=−46 | | 7a+a=-24 | | -5x+4=46 | | 50-6a=20 | | 1/4|1/2x+6|+8=4 | | 2y+9(-2)=-18 | | 5x-20/3=-7 | | 2/3(x)-12x=18 | | 18+5=y-9 | | 3/x=(9/5x)+2 | | 6x=10x+2x/2 | | 3v+19=-8(v-1) | | 3(5x+3)=-36+6x | | 39=u/4+11 | | N+9=13n= | | 6x=(10x+2x)/2 |

Equations solver categories