(3/10)(x+2)=12

Simple and best practice solution for (3/10)(x+2)=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/10)(x+2)=12 equation:



(3/10)(x+2)=12
We move all terms to the left:
(3/10)(x+2)-(12)=0
Domain of the equation: 10)(x+2)!=0
x∈R
We add all the numbers together, and all the variables
(+3/10)(x+2)-12=0
We multiply parentheses ..
(+3x^2+3/10*2)-12=0
We multiply all the terms by the denominator
(+3x^2+3-12*10*2)=0
We get rid of parentheses
3x^2+3-12*10*2=0
We add all the numbers together, and all the variables
3x^2-237=0
a = 3; b = 0; c = -237;
Δ = b2-4ac
Δ = 02-4·3·(-237)
Δ = 2844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2844}=\sqrt{36*79}=\sqrt{36}*\sqrt{79}=6\sqrt{79}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{79}}{2*3}=\frac{0-6\sqrt{79}}{6} =-\frac{6\sqrt{79}}{6} =-\sqrt{79} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{79}}{2*3}=\frac{0+6\sqrt{79}}{6} =\frac{6\sqrt{79}}{6} =\sqrt{79} $

See similar equations:

| 2(g+17)=94 | | 15x+3=16x+8 | | 8*w=72 | | -60=r-36 | | -210=-5(6n+6) | | 7(x-4)-2=-9 | | 28-m=10 | | 7=–2r–15 | | 35=-7v-35 | | -2x+5=x+11 | | m+2m+(m+10)=108 | | 8=-8(d+9) | | 5(d-92)=40 | | -3(x-2)=3(x-3)-x | | 120=-6(4+6n) | | t−9=−3 | | -3x=-27 | | -58=5-7x | | 5+6n+3=8 | | 3u−11=4 | | -6x=-36 | | 1/8z-2=2 | | 19-4p=12 | | x-4=5/3x | | k+2k=2k+5 | | 4x-6/3x-9=1/3 | | -7=x-3-2 | | 1+4q=7 | | 4x-2=3x-11 | | 5=1-k+2 | | 2+u=-7 | | 4(2x+5)=–48x+20=–4 |

Equations solver categories