(3/2)(16n+3)=24n

Simple and best practice solution for (3/2)(16n+3)=24n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)(16n+3)=24n equation:



(3/2)(16n+3)=24n
We move all terms to the left:
(3/2)(16n+3)-(24n)=0
Domain of the equation: 2)(16n+3)!=0
n∈R
We add all the numbers together, and all the variables
(+3/2)(16n+3)-24n=0
We add all the numbers together, and all the variables
-24n+(+3/2)(16n+3)=0
We multiply parentheses ..
(+48n^2+3/2*3)-24n=0
We multiply all the terms by the denominator
(+48n^2+3-24n*2*3)=0
We get rid of parentheses
48n^2-24n*2*3+3=0
Wy multiply elements
48n^2-144n*3+3=0
Wy multiply elements
48n^2-432n+3=0
a = 48; b = -432; c = +3;
Δ = b2-4ac
Δ = -4322-4·48·3
Δ = 186048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{186048}=\sqrt{576*323}=\sqrt{576}*\sqrt{323}=24\sqrt{323}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-432)-24\sqrt{323}}{2*48}=\frac{432-24\sqrt{323}}{96} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-432)+24\sqrt{323}}{2*48}=\frac{432+24\sqrt{323}}{96} $

See similar equations:

| 9=6(4x+9)-14 | | 314=-n+579 | | 7y-(8+3y)=38 | | 4(x-1)+5=-1+5x | | g/72=8 | | 66-v=102 | | 2(x+5)=2( | | z2=0.81 | | 17w-(2w-8)=-25 | | -16+b=-7 | | 400=g2 | | 3(r-6)-7=4 | | 12-x^2=x=0 | | 2/3+3m/5=32/15 | | 3/8p=-1/2 | | X+30=x-12 | | 7x-12+2x=4+9x-16 | | 5(x+3)=9x-9 | | 1/3s+s-10+s-20+40=360 | | 23=-4m=2=m | | 36=d2 | | -3(5y-7)-y=-2(y-4 | | -5x-10=2-x=4 | | 24x^2-32=196 | | 256=v2 | | v/9=-8 | | -4(9g)=-252 | | 20x-8=50x+4 | | y=3+8.5•-4 | | 24=-c+3c+4 | | 3+6x=-3x-5 | | 2+5a=42 |

Equations solver categories