(3/2)(y+9)=30

Simple and best practice solution for (3/2)(y+9)=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)(y+9)=30 equation:



(3/2)(y+9)=30
We move all terms to the left:
(3/2)(y+9)-(30)=0
Domain of the equation: 2)(y+9)!=0
y∈R
We add all the numbers together, and all the variables
(+3/2)(y+9)-30=0
We multiply parentheses ..
(+3y^2+3/2*9)-30=0
We multiply all the terms by the denominator
(+3y^2+3-30*2*9)=0
We get rid of parentheses
3y^2+3-30*2*9=0
We add all the numbers together, and all the variables
3y^2-537=0
a = 3; b = 0; c = -537;
Δ = b2-4ac
Δ = 02-4·3·(-537)
Δ = 6444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6444}=\sqrt{36*179}=\sqrt{36}*\sqrt{179}=6\sqrt{179}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{179}}{2*3}=\frac{0-6\sqrt{179}}{6} =-\frac{6\sqrt{179}}{6} =-\sqrt{179} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{179}}{2*3}=\frac{0+6\sqrt{179}}{6} =\frac{6\sqrt{179}}{6} =\sqrt{179} $

See similar equations:

| 19d=19d-18.29 | | 25x-8=22+5x | | n+8/9=-1 | | 3y+5y=22 | | 15+0,50x=0,75x | | 13*4x=624 | | m-3-6=15+4m | | -6.57-7.5c+17.59=11.02-7.5c | | x+10=-101 | | 140+58=x | | 5-5r=-3(1+2r) | | -9.12+12.6z+17.57=8.45+12.6z | | 10*10x=1300 | | -5x-4x=-8x-1 | | F(x)=2x^2+5x+20 | | -10v-5v=-15v | | 2/x+5=9 | | F(x)=2x^2+5x-20 | | –10v−5v=–15v | | -54=-5(b+1)-3(1+6b) | | -4y+16=0 | | 6(-10+9y)+y=-5 | | 8u-7=9 | | 16x+22=45 | | 2x-4-4x=16 | | 2x+16=2x-4x | | (2y+2)=8 | | 4–p=10 | | n-(-19)=(-21) | | 825-(x+176)=493 | | 7x+6=46-x | | 7(7n-7)=245 |

Equations solver categories