If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/2)a+(3/4)a+(3/8)a=105
We move all terms to the left:
(3/2)a+(3/4)a+(3/8)a-(105)=0
Domain of the equation: 2)a!=0
a!=0/1
a!=0
a∈R
Domain of the equation: 4)a!=0
a!=0/1
a!=0
a∈R
Domain of the equation: 8)a!=0We add all the numbers together, and all the variables
a!=0/1
a!=0
a∈R
(+3/2)a+(+3/4)a+(+3/8)a-105=0
We multiply parentheses
3a^2+3a^2+3a^2-105=0
We add all the numbers together, and all the variables
9a^2-105=0
a = 9; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·9·(-105)
Δ = 3780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3780}=\sqrt{36*105}=\sqrt{36}*\sqrt{105}=6\sqrt{105}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{105}}{2*9}=\frac{0-6\sqrt{105}}{18} =-\frac{6\sqrt{105}}{18} =-\frac{\sqrt{105}}{3} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{105}}{2*9}=\frac{0+6\sqrt{105}}{18} =\frac{6\sqrt{105}}{18} =\frac{\sqrt{105}}{3} $
| -5y=4–4y | | d(64)=340 | | -w/7=-59 | | -2x+2=-4x | | 6x+29=4x-33 | | x^2-28x-39=0 | | -9b+-9b+-9b=-108 | | 3.1/10s=6.1/5 | | x+6=-5x+3 | | 3x=3=21 | | 3w-4=15 | | (x=8)=5 | | x+6=-5+30 | | 8+10x=56-2x | | 16n-9n+12n=76 | | 8-j=-12 | | 6(+3x)=(5x)-4 | | f=4(2)+9 | | 5u+29=-4(u-5) | | 3(g+11)=-9 | | 6(+3x)=4(-5x) | | 6e=86 | | m+5-4m=-1 | | 20c-13c+3=10 | | 2x+18+4x=132 | | -5x+7x+9x=-88 | | f(2)=4(2)+9 | | 15x²-25x=0 | | 6-2x=6x-10x=12 | | 2x-5+x+6=0 | | (7/8)n-(3/4)n=-6 | | 2x-5-x+6=0 |