(3/2)b+b+(b+45)+(2b-90)+90=540

Simple and best practice solution for (3/2)b+b+(b+45)+(2b-90)+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)b+b+(b+45)+(2b-90)+90=540 equation:



(3/2)b+b+(b+45)+(2b-90)+90=540
We move all terms to the left:
(3/2)b+b+(b+45)+(2b-90)+90-(540)=0
Domain of the equation: 2)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+3/2)b+b+(b+45)+(2b-90)+90-540=0
We add all the numbers together, and all the variables
b+(+3/2)b+(b+45)+(2b-90)-450=0
We multiply parentheses
3b^2+b+(b+45)+(2b-90)-450=0
We get rid of parentheses
3b^2+b+b+2b+45-90-450=0
We add all the numbers together, and all the variables
3b^2+4b-495=0
a = 3; b = 4; c = -495;
Δ = b2-4ac
Δ = 42-4·3·(-495)
Δ = 5956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5956}=\sqrt{4*1489}=\sqrt{4}*\sqrt{1489}=2\sqrt{1489}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{1489}}{2*3}=\frac{-4-2\sqrt{1489}}{6} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{1489}}{2*3}=\frac{-4+2\sqrt{1489}}{6} $

See similar equations:

| B-3+6b=26 | | -4(2x-3)-2x-1=11+5x | | 2/3y-1/6+4=19 | | 9=5/3x-1 | | 1/4k=3-1/4k+3 | | 4.9=7.9-0.5x | | (z+7)^2=-81 | | 3(x+3(4-x))=3x+1 | | 3x^2-9=-155 | | 3x2-9=-156 | | -2x+10=12-3 | | 6(y-5)+4(y+4)=66 | | (7x-9)+(5x-11)=(9x+1) | | 9=n+15 | | 3(4-y)+6y=4y | | 6(x=4)-2x+5x-20 | | (9x+1)+(7x-9)=x | | 5/7x^2-x=3/7 | | -3(w+12)-11w=5 | | w/30=7/10 | | 3(2x-1.4)-1/2(7x+5.6=0 | | 9=4n=-59 | | x+17+2x=3-2x-10 | | -n+5+12n=0 | | -4(4x-6)=136 | | 12x+4=7x+4 | | 10+p=-19 | | 5(-8+x)=-55 | | 13.2=-11b | | 4x^2=1-4x | | -9=n+15 | | 18x^2+3x+4=0 |

Equations solver categories