(3/2)b=6*1/4

Simple and best practice solution for (3/2)b=6*1/4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)b=6*1/4 equation:



(3/2)b=6*1/4
We move all terms to the left:
(3/2)b-(6*1/4)=0
Domain of the equation: 2)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+3/2)b-(+6*1/4)=0
We multiply parentheses
3b^2-(+6*1/4)=0
We get rid of parentheses
3b^2-6*1/4=0
We multiply all the terms by the denominator
3b^2*4-6*1=0
We add all the numbers together, and all the variables
3b^2*4-6=0
Wy multiply elements
12b^2-6=0
a = 12; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·12·(-6)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*12}=\frac{0-12\sqrt{2}}{24} =-\frac{12\sqrt{2}}{24} =-\frac{\sqrt{2}}{2} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*12}=\frac{0+12\sqrt{2}}{24} =\frac{12\sqrt{2}}{24} =\frac{\sqrt{2}}{2} $

See similar equations:

| 3-x+6x=58 | | 3/2b=6*1/4 | | 2(3x-4)+5x=20 | | 8x+19=-35 | | -72=-2x-5x-9 | | 8x+19=-25 | | 1/5d-4+3/8d-4=5 | | 0.75q+2.4=-6.5 | | 2^x=67 | | -10+3x+6x=-28 | | x-53=159x=212 | | x-53=159 | | 9+(2/3)c=81 | | —24=5r+3r | | 5a-40=50 | | 6–3p=34 | | 9+3c/4c=81 | | 3h+12=21 | | x+12=-2x+21 | | 42-p=30 | | 28-3y=12 | | 2m-2=6m=4 | | 5x-3x-2=8 | | 1/3x+8=6 | | 4x-25=x* | | 60b=900 | | 6n+13=7n-4 | | -7v=-8v+5 | | x(3-4x)=7+4(8x-x^2) | | (4x+12)=(3x-21) | | ⅓x+8=6 | | -4(7x-8)+4(-7+8x)=-4 |

Equations solver categories