(3/2)w+1=w+9/2

Simple and best practice solution for (3/2)w+1=w+9/2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)w+1=w+9/2 equation:



(3/2)w+1=w+9/2
We move all terms to the left:
(3/2)w+1-(w+9/2)=0
Domain of the equation: 2)w!=0
w!=0/1
w!=0
w∈R
We add all the numbers together, and all the variables
(+3/2)w-(+w+9/2)+1=0
We multiply parentheses
3w^2-(+w+9/2)+1=0
We get rid of parentheses
3w^2-w+1-9/2=0
We multiply all the terms by the denominator
3w^2*2-w*2-9+1*2=0
We add all the numbers together, and all the variables
3w^2*2-w*2-7=0
Wy multiply elements
6w^2-2w-7=0
a = 6; b = -2; c = -7;
Δ = b2-4ac
Δ = -22-4·6·(-7)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{43}}{2*6}=\frac{2-2\sqrt{43}}{12} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{43}}{2*6}=\frac{2+2\sqrt{43}}{12} $

See similar equations:

| -16=4(f+6) | | 16k-5k+2k-7k-4k+2=8 | | 1/2q-2=3/2q | | 2(x-1)+3(x-2)+4(x-3)=3(x-1) | | 4+10=-2(7x-7) | | x+9=-51 | | -10z+18+4z=2(z-3) | | 15x−4+40x=25−3x | | X+2y=2.25 | | 8=h+4 | | -11w=-132 | | 55+4-2x+x=180 | | 14+8r=6r+38 | | -8=6-q | | 3(m-4)+5=-4 | | 7h−7=6h | | 1+6x-x=9 | | -7x+10=4x-20 | | -9=f/2-11 | | X+2(x)=2.25 | | 4(-3n-6)=-6(n-2 | | 6x–12=3x+18 | | 5x+180=15x | | -17+27=-5(x+6) | | (-2x/3)+2=42 | | -2x+2(-5)=-11 | | -4w+3=-5w | | 1/4096=1/2^x | | 4x+5=10x+7=40 | | -22-3r=5r-2 | | 9x-20=3x-3 | | –6w=7−5w |

Equations solver categories