(3/2)x+(5/4)=3

Simple and best practice solution for (3/2)x+(5/4)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)x+(5/4)=3 equation:



(3/2)x+(5/4)=3
We move all terms to the left:
(3/2)x+(5/4)-(3)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
determiningTheFunctionDomain (3/2)x-3+(5/4)=0
We add all the numbers together, and all the variables
(+3/2)x-3+(+5/4)=0
We multiply parentheses
3x^2-3+(+5/4)=0
We get rid of parentheses
3x^2-3+5/4=0
We multiply all the terms by the denominator
3x^2*4+5-3*4=0
We add all the numbers together, and all the variables
3x^2*4-7=0
Wy multiply elements
12x^2-7=0
a = 12; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·12·(-7)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*12}=\frac{0-4\sqrt{21}}{24} =-\frac{4\sqrt{21}}{24} =-\frac{\sqrt{21}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*12}=\frac{0+4\sqrt{21}}{24} =\frac{4\sqrt{21}}{24} =\frac{\sqrt{21}}{6} $

See similar equations:

| 54=1/2×12×h | | 15x-5=2-6x | | 677.25=(1.00)x+(1.00)(0.075)(x) | | -6p=-12-5p | | 8-7x=43-7x | | (3x+9)(5x-5)=0 | | -7d=-15-8d | | 4(c+11)+2=18 | | -11y−-13y+-3=-9 | | -6=3(q-18) | | -16=-(p+5) | | 5xx5=60 | | 220=11x+88 | | 5x.5=60 | | 0=〖6k〗^2+12k+6 | | 7g-4g=3 | | 5x•5=60 | | 13-4f=-7 | | 13−4f=-7 | | F(x)=6x-23 | | 19-f=13 | | 481-14x=15x+17 | | -4c+8=12 | | 3x+8=6x+4 | | 2x+2^(x+3)=136 | | 11-20k=-19k | | 14-s=10 | | 6(x-20)=2(x+20) | | 6(x-20)=2(x+200 | | j+3/4=3 | | z+7/4=3 | | 18=3(c-11) |

Equations solver categories