(3/2)x-(1/4)x+(5/6)x=5

Simple and best practice solution for (3/2)x-(1/4)x+(5/6)x=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2)x-(1/4)x+(5/6)x=5 equation:



(3/2)x-(1/4)x+(5/6)x=5
We move all terms to the left:
(3/2)x-(1/4)x+(5/6)x-(5)=0
Domain of the equation: 2)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 6)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/2)x-(+1/4)x+(+5/6)x-5=0
We multiply parentheses
3x^2-x^2+5x^2-5=0
We add all the numbers together, and all the variables
7x^2-5=0
a = 7; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·7·(-5)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*7}=\frac{0-2\sqrt{35}}{14} =-\frac{2\sqrt{35}}{14} =-\frac{\sqrt{35}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*7}=\frac{0+2\sqrt{35}}{14} =\frac{2\sqrt{35}}{14} =\frac{\sqrt{35}}{7} $

See similar equations:

| .50(8x+6)=9 | | 40+3x=202 | | 8x-6=3+6x | | 3(2x+14)=3x | | 5x/28-3=x/7+4 | | 53+w=68 | | x+3(2-x)=6x-2 | | 5X^2+5y^2=125 | | 3n2+5=30 | | (5+v)(3v+7)=0 | | 175=35/2x | | 13x+16=7x+20 | | X2+y2-64=0 | | 4x+1.3x+9=-3 | | 5+x2=-3 | | 300+.014×=200+.025x | | 10/15=x/9 | | (2/3x)-6=3+(1/2x) | | 3n+4=3(n+) | | c+10=49 | | 2/r+5/3r=1 | | 6x+30+5x+12+2x+8=180 | | 6x-23=9x+4 | | 8-0.8(j-5)=0.6(2j-5) | | X2+y2-16=0 | | 2/2500=x/105625 | | 5x+9=4x-4 | | X2+y2-25=0 | | X2+y2+64=0 | | n2-2n-899=0 | | 3m-2(m+7)=2m+4 | | Y=3x(1/2)x-2+1 |

Equations solver categories