(3/2*b)+6*(1/2*b)=15+3b

Simple and best practice solution for (3/2*b)+6*(1/2*b)=15+3b equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2*b)+6*(1/2*b)=15+3b equation:



(3/2b)+6(1/2b)=15+3b
We move all terms to the left:
(3/2b)+6(1/2b)-(15+3b)=0
Domain of the equation: 2b)!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+3/2b)+6(+1/2b)-(3b+15)=0
We multiply parentheses
(+3/2b)+6b-(3b+15)=0
We get rid of parentheses
3/2b+6b-3b-15=0
We multiply all the terms by the denominator
6b*2b-3b*2b-15*2b+3=0
Wy multiply elements
12b^2-6b^2-30b+3=0
We add all the numbers together, and all the variables
6b^2-30b+3=0
a = 6; b = -30; c = +3;
Δ = b2-4ac
Δ = -302-4·6·3
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{23}}{2*6}=\frac{30-6\sqrt{23}}{12} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{23}}{2*6}=\frac{30+6\sqrt{23}}{12} $

See similar equations:

| 5x-9+2x+3+3x+4=180 | | 6/12=b/3 | | 203=44-x | | 3k+20+14k=-16+14k | | z-17=-9 | | 6d+4+5d2d=58 | | 10-8x+7x=12 | | 3-2y=5y | | X^2-42x+80=0 | | 4x^2-12x+9=4x^2 | | 8-z=-7 | | -8+11n-9n=3n+8 | | 44-x=203 | | m/4=6/15 | | 3=13-x/2 | | 10+5c=-10+c | | 1.999n=-1.999/2n | | 8(k–72)=64 | | z+11=16 | | -5=w-3w= | | 7x+2+3x-1+2x+5=180 | | –8+11n−9n=3n+8 | | -2u+12=-18-3u+13 | | 4x2x=32 | | 3x+-4=-5x+-2x+-8 | | 8x-5=2x-8 | | 2v-3v2=(2v-2)4v | | 5(2x+1)+6x-13=3(3x-2( | | -2/5x=1/3(2x-12) | | 2x-8+8x-5+90=180 | | 4x+15;=7 | | 2x-8+8x-5=90 |

Equations solver categories