(3/2x)+6x=270

Simple and best practice solution for (3/2x)+6x=270 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2x)+6x=270 equation:



(3/2x)+6x=270
We move all terms to the left:
(3/2x)+6x-(270)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+3/2x)+6x-270=0
We add all the numbers together, and all the variables
6x+(+3/2x)-270=0
We get rid of parentheses
6x+3/2x-270=0
We multiply all the terms by the denominator
6x*2x-270*2x+3=0
Wy multiply elements
12x^2-540x+3=0
a = 12; b = -540; c = +3;
Δ = b2-4ac
Δ = -5402-4·12·3
Δ = 291456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{291456}=\sqrt{576*506}=\sqrt{576}*\sqrt{506}=24\sqrt{506}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-540)-24\sqrt{506}}{2*12}=\frac{540-24\sqrt{506}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-540)+24\sqrt{506}}{2*12}=\frac{540+24\sqrt{506}}{24} $

See similar equations:

| (4x-2)-(6x+8)+2(4x-3)=16x+14 | | 14x+8=22+ | | 13y-25+8y=38 | | 5x(x+1)(3x+7)=0 | | 7^n+10=14 | | 21y+3=47 | | 18+4c=26 | | (4x-5)+(6x-2)+(x)=180 | | 4(5x-1)-7=20x-11 | | X*y=43 | | 14+2w=40 | | 90+(2x+35)+(5x-8)=180 | | (x+7)+(6x-3)+(4x)=180 | | 48x^2-16x=35x^2 | | 48x^2-16x^2=35x^2 | | 12k-15=45 | | (7x)(5x)=(4x)(12x-4) | | 0.4(x+5)=-13 | | 2m+12=27 | | (4x-2)+(3x+6)+(x)=180 | | 6(5x-4)=3(6x+5) | | 3h+4=28 | | 3/2+16/15=w | | 8x+3x=-11 | | 5(7-x)=31x | | (1÷2x-5)+(15÷2x-1)=2 | | 10+4y=30 | | X+1-2=x16 | | 2x/5+23/5=3 | | 4x/3+23/3=17 | | 6(4x+1)=74 | | 38-4+m=48 |

Equations solver categories