(3/2x+1)+(4/5x-1)=2

Simple and best practice solution for (3/2x+1)+(4/5x-1)=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2x+1)+(4/5x-1)=2 equation:



(3/2x+1)+(4/5x-1)=2
We move all terms to the left:
(3/2x+1)+(4/5x-1)-(2)=0
Domain of the equation: 2x+1)!=0
x∈R
Domain of the equation: 5x-1)!=0
x∈R
We get rid of parentheses
3/2x+4/5x+1-1-2=0
We calculate fractions
15x/10x^2+8x/10x^2+1-1-2=0
We add all the numbers together, and all the variables
15x/10x^2+8x/10x^2-2=0
We multiply all the terms by the denominator
15x+8x-2*10x^2=0
We add all the numbers together, and all the variables
23x-2*10x^2=0
Wy multiply elements
-20x^2+23x=0
a = -20; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·(-20)·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{529}=23$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*-20}=\frac{-46}{-40} =1+3/20 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*-20}=\frac{0}{-40} =0 $

See similar equations:

| 2m=13/2 | | g+2.88/3=3.74 | | X+2x+3x=9+10+11= | | -5z=-9z+25 | | 9.2y+4=96 | | 14=x/9+11 | | F(x)=x/127 | | 66x+27=100 | | 12x(x-3)=36 | | 61=28+m | | 3(3x+1)-4(2x-5)=24 | | s*7-28=22 | | x+.125x=7770 | | l/8-3=2 | | 9x+3-8x-20=24 | | 1/10x+1/2x=3/5X | | 42=Xx7 | | -3^(2x)=27^4 | | 10^{x-3}=100,000 | | 50+25y=150 | | h+1/2=9 | | 5m+22=7 | | 42=Xx73 | | s-7/9=8 | | 9^(6-1.3x)+4=22 | | (4x-4)(5x+1)41=180 | | 3/5+w=10 | | 9^6-1.3x+4=22 | | 3x+14-2x-53=2 | | w-7=2.7 | | 4•(x-7)+3•(5-2x)=3x+2 | | p+5.5=9.7 |

Equations solver categories