(3/2x+20)-2x=90

Simple and best practice solution for (3/2x+20)-2x=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2x+20)-2x=90 equation:



(3/2x+20)-2x=90
We move all terms to the left:
(3/2x+20)-2x-(90)=0
Domain of the equation: 2x+20)!=0
x∈R
We add all the numbers together, and all the variables
-2x+(3/2x+20)-90=0
We get rid of parentheses
-2x+3/2x+20-90=0
We multiply all the terms by the denominator
-2x*2x+20*2x-90*2x+3=0
Wy multiply elements
-4x^2+40x-180x+3=0
We add all the numbers together, and all the variables
-4x^2-140x+3=0
a = -4; b = -140; c = +3;
Δ = b2-4ac
Δ = -1402-4·(-4)·3
Δ = 19648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19648}=\sqrt{64*307}=\sqrt{64}*\sqrt{307}=8\sqrt{307}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-8\sqrt{307}}{2*-4}=\frac{140-8\sqrt{307}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+8\sqrt{307}}{2*-4}=\frac{140+8\sqrt{307}}{-8} $

See similar equations:

| 4-9x2=0 | | 4/5-x=3/7 | | x^2-(2x-1)/3=2x+4 | | x+x/2+x-5=100 | | 2r^2-12+12=-3 | | Y=6x;Y=10x | | 2x^2-2x+(x-1)^2=0 | | d-5=9/2 | | (x-1)^2=2x-2x^2 | | 13x-226=5x-10 | | 3x+70=10x-14 | | 6x+23=4x+65 | | 0=2x+3-1 | | -4+4x=33x=24 | | Y=a(0.8×) | | 7/4x+1=x/8+3 | | 7/4+1=x/8+3 | | 36-6x=-90-10x | | N^2=2n+18 | | 7+3x=-1=x | | x+1/4=4/x-1 | | x*x-1=80 | | 8y-18=3(3y+3) | | 3x-57=27 | | y2+14=-9y | | |8-2t|=-6 | | 7x-49=23 | | h2-h-20=0 | | a2-9a+20=0 | | 2x^2+5x=31 | | f(0.1)=0.8,f(0.8)=-0.4, | | -3a=5-3(a+5) |

Equations solver categories