(3/2x+5)=1/9x

Simple and best practice solution for (3/2x+5)=1/9x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/2x+5)=1/9x equation:



(3/2x+5)=1/9x
We move all terms to the left:
(3/2x+5)-(1/9x)=0
Domain of the equation: 2x+5)!=0
x∈R
Domain of the equation: 9x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(3/2x+5)-(+1/9x)=0
We get rid of parentheses
3/2x-1/9x+5=0
We calculate fractions
27x/18x^2+(-2x)/18x^2+5=0
We multiply all the terms by the denominator
27x+(-2x)+5*18x^2=0
Wy multiply elements
90x^2+27x+(-2x)=0
We get rid of parentheses
90x^2+27x-2x=0
We add all the numbers together, and all the variables
90x^2+25x=0
a = 90; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·90·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*90}=\frac{-50}{180} =-5/18 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*90}=\frac{0}{180} =0 $

See similar equations:

| 3(14a-12)=90 | | 12-6x=-11+9x | | 2(x-4)²-8=4 | | 8x=8+64 | | 1-3x=-44+6x | | 4x^2-36x+7=28 | | 2x^2-16x+24=4 | | -15+15x=11+4x | | 7y-4=3+10y | | X/5=5x2+3 | | 4x-1+57=180 | | 4x-1=57 | | 13+5x=-3+11x | | (X-3)(x+4)=(x-2)(x-2) | | 3b-12=27 | | 3-2m=45-9m | | X+3=5x6 | | -11a+6=12a+6 | | 5y-13=2y-4 | | 8x+7=2-13x | | 10y+2=-15-7y | | 1/3(6x-15)=1/2(10-4) | | w+3=3-2 | | 6x-1=12x+6 | | 5r+7=2r+3r | | (x+2)*(7-3)=(x-4)*(x-3) | | 11x+10=4x-10 | | -2(1+7)-5n=-78 | | 11x-10=4x-10 | | 4(x+3)-8x=32 | | 7x-13=8x-22 | | 3x+42=60 |

Equations solver categories