If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3/4)(12+4a)=21
We move all terms to the left:
(3/4)(12+4a)-(21)=0
Domain of the equation: 4)(12+4a)!=0We add all the numbers together, and all the variables
a∈R
(+3/4)(4a+12)-21=0
We multiply parentheses ..
(+12a^2+3/4*12)-21=0
We multiply all the terms by the denominator
(+12a^2+3-21*4*12)=0
We get rid of parentheses
12a^2+3-21*4*12=0
We add all the numbers together, and all the variables
12a^2-1005=0
a = 12; b = 0; c = -1005;
Δ = b2-4ac
Δ = 02-4·12·(-1005)
Δ = 48240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48240}=\sqrt{144*335}=\sqrt{144}*\sqrt{335}=12\sqrt{335}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{335}}{2*12}=\frac{0-12\sqrt{335}}{24} =-\frac{12\sqrt{335}}{24} =-\frac{\sqrt{335}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{335}}{2*12}=\frac{0+12\sqrt{335}}{24} =\frac{12\sqrt{335}}{24} =\frac{\sqrt{335}}{2} $
| 2=(6p9) | | 5x²+24x=0 | | -x/3=-20 | | -27=u/3 | | X³+4x-1=0 | | X*2=y*4=2.68 | | (M(2)+c(64))/100=268 | | 41/2+a=91/2 | | (M(2)+c(64))*100=268 | | X2-y4=268 | | 2x/4-18=6 | | -n+66=7n | | 101=5u+16 | | j+(j+42.50)+(j+27.50)=125.95 | | 8-(3x+30)=1 | | 8t+4(20.55-t)=138.2 | | 205-7x=93 | | -65+y/7=-22 | | 19x-12=2x^2 | | 249=64+5x | | 5x-2x+6x+30=6 | | -y/42+92=30 | | 138=6x+64 | | -102+2y=75 | | 14x+5+105=180 | | 5(12+-2y)+10y=400 | | 56=x/9=24 | | -16+s=30 | | 5p+7=5p=-21 | | 15-y/18=24 | | n/3=n/48 | | 5n^2-3n-4712=0 |