(3/4)(2x+12)=3x-3

Simple and best practice solution for (3/4)(2x+12)=3x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)(2x+12)=3x-3 equation:



(3/4)(2x+12)=3x-3
We move all terms to the left:
(3/4)(2x+12)-(3x-3)=0
Domain of the equation: 4)(2x+12)!=0
x∈R
We add all the numbers together, and all the variables
(+3/4)(2x+12)-(3x-3)=0
We get rid of parentheses
(+3/4)(2x+12)-3x+3=0
We multiply parentheses ..
(+6x^2+3/4*12)-3x+3=0
We multiply all the terms by the denominator
(+6x^2+3-3x*4*12)+3*4*12)=0
We add all the numbers together, and all the variables
(+6x^2+3-3x*4*12)=0
We get rid of parentheses
6x^2-3x*4*12+3=0
Wy multiply elements
6x^2-144x*1+3=0
Wy multiply elements
6x^2-144x+3=0
a = 6; b = -144; c = +3;
Δ = b2-4ac
Δ = -1442-4·6·3
Δ = 20664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20664}=\sqrt{36*574}=\sqrt{36}*\sqrt{574}=6\sqrt{574}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-6\sqrt{574}}{2*6}=\frac{144-6\sqrt{574}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+6\sqrt{574}}{2*6}=\frac{144+6\sqrt{574}}{12} $

See similar equations:

| 9u=25+4u | | 4=m/2+2 | | 1-2/3p=21/4 | | 4y+9=2(3-y) | | 5(2y-2)=4=4 | | 24=x+x+4+8 | | (3x-6)-(8x+4)=130 | | 3-10k=-3(5k+2)-4 | | 42w-7=77 | | x2−1=2 | | (1/2)(5x+2)=(1/3)(6x-7) | | -571.703=-764.656+t | | 4(8-c)=8c+20-6c | | 2(x+1)=12-x | | 28=14+7w | | 6i(-1-4i)=0 | | y–3=-3y-43 | | 12y=3y-y+4y | | 9+3n-6=9n+21-3n | | 8(y–2)=4y | | 4/3m-2/3=-1 | | 2/3+m+6=3/4 | | 6d+3D-2=34 | | 9v=5v+20 | | 6x-6-3x=-3 | | 8y+4-y2=22 | | 16x=56+8x | | 2+a=23 | | 2×+y=4,4×-3y=3 | | 19-7.8q=-12.4 | | 55=11w-88 | | 2.2=z/7 |

Equations solver categories