(3/4)a+12=42

Simple and best practice solution for (3/4)a+12=42 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)a+12=42 equation:



(3/4)a+12=42
We move all terms to the left:
(3/4)a+12-(42)=0
Domain of the equation: 4)a!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
(+3/4)a+12-42=0
We add all the numbers together, and all the variables
(+3/4)a-30=0
We multiply parentheses
3a^2-30=0
a = 3; b = 0; c = -30;
Δ = b2-4ac
Δ = 02-4·3·(-30)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{10}}{2*3}=\frac{0-6\sqrt{10}}{6} =-\frac{6\sqrt{10}}{6} =-\sqrt{10} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{10}}{2*3}=\frac{0+6\sqrt{10}}{6} =\frac{6\sqrt{10}}{6} =\sqrt{10} $

See similar equations:

| 4(1)-4y=7 | | 25+x=15+2x | | 1/4(8x+2)=7 | | m-8/2=1 | | 3(4x+3)-2=12x | | 1/4+4x=8 | | 3y÷4=9÷y | | 90xY=450 | | 4(x-2)-5(2x-3)=8(x+1)-3(2x+3) | | 3/5x^2-1/6x=1/8 | | 2x+5)2-(2x+5)-6=0 | | 121-4*m=9 | | -7+x=x-6 | | 18=r+6 | | 6t/4=12 | | h+9=13 | | -6u+48=6 | | -4=z/2 | | 40-2*x=8 | | 1/7k=-6 | | 3x-8-7x=4 | | g/4+13=24 | | 26=i+12 | | 40=2(x*8) | | x=35600+0.3x | | 2=-1/2r | | 15-n=16 | | p+6=19 | | 0.08x+15.73=16.48-0.15x | | 15+n=-16 | | 4k/3+3=1 | | 2a+5=-2+2a+3 |

Equations solver categories