(3/4)g+16=24

Simple and best practice solution for (3/4)g+16=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)g+16=24 equation:



(3/4)g+16=24
We move all terms to the left:
(3/4)g+16-(24)=0
Domain of the equation: 4)g!=0
g!=0/1
g!=0
g∈R
We add all the numbers together, and all the variables
(+3/4)g+16-24=0
We add all the numbers together, and all the variables
(+3/4)g-8=0
We multiply parentheses
3g^2-8=0
a = 3; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·3·(-8)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*3}=\frac{0-4\sqrt{6}}{6} =-\frac{4\sqrt{6}}{6} =-\frac{2\sqrt{6}}{3} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*3}=\frac{0+4\sqrt{6}}{6} =\frac{4\sqrt{6}}{6} =\frac{2\sqrt{6}}{3} $

See similar equations:

| 6x+18=-2x+12 | | 30=6x-2x+6= | | -3+t=25 | | 4+5x=73 | | 2(x+2)+3x=2(x+1 | | -1=t+9 | | 5x-5=14x-4 | | 5^2x+3*5^2x-6=1/625 | | 35+2x=180 | | F(x)=4x2-3x+1 | | 12^2+b^2=15^2 | | X.6+(2x-10)=4x | | F(x)=-2x^+16x-26 | | 4d-13=12-d | | (3-9i)(-3+9i)=0 | | 22p+3=4p+12 | | -3/4x^2+2=0 | | 45-7x=19+6x | | 273-x=153 | | n2=36 | | (3+9i)(-3+9i)=0 | | 174=-w+247 | | 8q–4q=20 | | 7x+1-3=4x+2+7x | | -x+164=289 | | x=2/3(180×x) | | 8a-6=35 | | 7x+6x-18=54-5x | | F(x)=2x^+16x-26 | | 4=3x-5(x+2) | | (5r-6)(2r-5)=0 | | 7x+5-4x=5x+8-2x-3x |

Equations solver categories