(3/4)g-9=4(g+1)

Simple and best practice solution for (3/4)g-9=4(g+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3/4)g-9=4(g+1) equation:



(3/4)g-9=4(g+1)
We move all terms to the left:
(3/4)g-9-(4(g+1))=0
Domain of the equation: 4)g!=0
g!=0/1
g!=0
g∈R
We add all the numbers together, and all the variables
(+3/4)g-(4(g+1))-9=0
We multiply parentheses
3g^2-(4(g+1))-9=0
We calculate terms in parentheses: -(4(g+1)), so:
4(g+1)
We multiply parentheses
4g+4
Back to the equation:
-(4g+4)
We get rid of parentheses
3g^2-4g-4-9=0
We add all the numbers together, and all the variables
3g^2-4g-13=0
a = 3; b = -4; c = -13;
Δ = b2-4ac
Δ = -42-4·3·(-13)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{43}}{2*3}=\frac{4-2\sqrt{43}}{6} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{43}}{2*3}=\frac{4+2\sqrt{43}}{6} $

See similar equations:

| −37−6u=−7 | | 4=a+10/12 | | 5x-89=-12x+115 | | 5(x+2)=4(x+10) | | k-157=1 | | 3x+6=3x+66 | | (3y+4)(3+y)=0 | | 2x+2(5x-6)=72 | | -3(k-5)-(4k-2)=4 | | -34c+7=31 | | -33+x=37+6x | | a=1/2*11*4 | | 5x-27=2x+13 | | 199t-5-3=67.5 | | 2x+7(x-4)=44 | | 9+5x=−1 | | 7x+8=8(x-6 | | 82=(2x-8)+(3x-12)+x | | ​3/​2​​b+5=20−b | | 8x=4x+76 | | -14+56v=1 | | 3x-15+2x+20=180 | | (7/3x+1)-(18x/3x-1)=-6 | | 6/7t-12=3/14t+15 | | 4x+6(x-9)=36 | | -3x+16=19 | | |1.5x|-8=-11 | | 5x-3x+15=x+7 | | 1/4+y=1/8 | | 3=x÷4 | | 3x+24+6x+29=180 | | 5/4b+7=7/8b+19 |

Equations solver categories